
38

Dradis: Effective Information 
Sharing for Pentest Teams

By Russ McRee – ISSA member, Puget Sound (Seattle), USA Chapter

Prerequisites
For Linux installations: Ruby interpreter, 
SQLite3 libraries, SQLite3 Ruby gem

Who amongst you braves the toils and tribulations 
of penetration and vulnerability testing? Should 
this be your true calling, do you undertake yon 

efforts alone? Methinks not. Youthinks enough of the olde 
English, too, I’ll bet. Seriously though, most penetration/vul-
nerability testing efforts are team driven. And those teams 
need to ensure precise, thorough documentation and track-
ing, yes? 

Dradis will serve you in this cause as a self-contained web 
application that provides a centralized repository for infor-
mation acquired during testing in order to work completed 
and pending. It is the Dradis developer’s contention (and I 
agree) that failure to share “information available in an ef-
fective way will result in exploitation opportunities lost and 
the overlapping of efforts.” Testing teams face multiple chal-
lenges specific to information sharing, including a variety of 
output types from all the tools utilized. Testers gather results 
in different ways. Each team generates different reports, and 
so on.

Failure to centralize information sharing will result in indi-
vidual sets of notes per tester used to track their findings, and 
those notes are often stored locally, or on a shared resource, 
but not updating in real time for use by the rest of the team.1

Figure 1 provides a basic Dradis architectural overview.

Developed under GPLv2 using Ruby on Rails and platform 
independent, Dradis uses a simple client/server model where 
the client communicates with the server via REST web ser-
vices over SSL. You can choose either a console or browser 

1	 http://dradisframework.org/overview.html.

GUI. We’ll focus on the browser client for the sake of conve-
nience and graphic representation.

I asked Daniel Martín Gómez for insight on Dradis, includ-
ing the name:

“It all started watching Battlestar Galactica, the 2004 remake. 
Without windows in battlestars, they need to rely on their in-
struments to know what is going on. DRADIS is an onboard 
information system where each person in the command cen-
ter has access to a DRADIS screen where they all share the 
same picture of what is going on. When nothing interesting 
is going on, everybody is busy minding their own business, 
ensuring that the ship keeps ticking. However, as soon as 
something noteworthy appears in the DRADIS screen, they 
all engage and instantly know what is going on. I loved the 
concept, the idea that a team of security testers could share 
the same picture; everybody adding information to the re-
pository, everybody sharing the insights obtained by the rest 
of the team.

Going from sci-fi to reality hasn’t been as easy as we’d like, 
our goals are:

1.	 Effective information sharing
2.	 Ease of use and adoption: we are proposing a new way of 

working; it better be easy for security teams to give it a try
3.	 Flexibility: Every user has different needs; we need to build 

a platform that users (and companies) can adapt to their 
needs; Everybody can easily extend Dradis using plugins

4.	 Small and portable: You should be able to use it while on-
site (no outside connectivity); It should be OS indepen-
dent (no two testers use the same OS)

It is evident that the goals we set for the project are quite 
high, and hitting them hasn’t been an easy feat, but with 
every new release, and with a growing user base, we are 
getting closer. Today Dradis is being used by pentest com-
panies around the world. We are getting feedback from 
people who felt that there was not a good tool for security 
professionals to collaborate effectively. Those same peo-
ple are trying to convince their companies to embrace our 
framework. Our community is growing fast and we are try-
ing to keep up with the challenge; more users means more 
feedback, more churning, more releases, and better results. 
Our hope is to make Dradis Framework the tool of choice for 
security professionals and enthusiasts to structure and share 
information effectively.”

In 2009 Dradis was included in BackTrack 4, featured in Of-
fensive Security’s Metasploit Unleashed, presented at DEF-
CON 17, and lined up for inclusion in Pentoo.

toolsmith

Figure 1 – Dradis architecture

ISSA Journal | April 2010

©2010 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.



39

toolsmith – Dradis: Effective Information Sharing for Pentest Teams | Russ McRee

Installing and configuring Dradis
Dradis can be installed on both Windows and Linux. For 
Windows users, all the dependencies are installed for you; in-
stallation is an extremely simple click-through process.

On Linux installations, you can utilize verify.sh2 which is, as 
you can imagine, a Dradis dependencies verification script. 
Execute sh verify.sh and you’ll be advised what, if any-
thing, you’re missing. I lacked the Ruby development librar-
ies; I ran sudo apt-get install ruby-dev libopenssl-
ruby and was quickly in business.

For this article I focused only on a Windows installation. 
Once Dradis is installed, getting down to work is as simple 
as Start à Dradis à Start Dradis Server, then browsing to 
https://localhost:3004/. There’s a nice wizard to get you up to 
speed at https://localhost:3004/wizard. 

Dradis uses an authentication mechanism I struggle to ac-
cept, but I understand the developer’s intentions. It’s based 
on the knowledge of a shared password. Given that Dradis 
is designed for small dynamic teams, the authentication 
scheme seeks to avoid the hassle of creating new users and 
assign passwords; the team agrees on a password to be shared 
during the engagement and changed only if need be. 

Dradis offers a number of useful plugins for use to import, 
export, or upload. 

In order to make use of the OSVDB Import Plugin you must 
place your OSVDB API key in C:\<your Win-
dows installation hierarchy>\dradis-2.5\
server\config\osvdb_import.yml.

I’ll cover exports when I discuss reporting later.

Upload plugins include:

•	 NessusUpload: vulnerability scanner

•	 NmapUpload: network mapper

•	 NiktoUpload: web server scanner

•	 BurpUpload: web application scanner

Each of these allows you to upload results from 
the related tools; you simply need to be able to 
generate said results to do so.

2	 http://dradisframework.org/install.html.

The Nessus plugin will upload results exported from Nessus 
in the .nessus format; the Burp, nmap, and nikto plugins im-
port XML results. 

I have recommended to the development team that similar 
plugins be added for commercial pentest tools such as Core 
and Canvas.

Using Dradis
I’ll walk through a real vulnerability testing scenario and use 
Dradis as I go. 

In February I analyzed a shopping cart application (DFD 
Cart) that resulted in responsible disclosure, repair, and advi-
sories. DFD Cart is a fairly new project written by an attentive 
and diligent developer who was very responsive to the bug 
report. To test DFD Cart for the bug hunt I installed the latest 
version on my test server (192.168.248.102). After allowing 
the requested amount of time necessary for the developer to 
make repairs, Secunia issued SA 386353 and I issued HIO-
2010-0207.4 Keep this in mind as I import OSVDB details on 
these advisories.

I’ll offer some oversimplified generalizations here as this is 
an article about Dradis, not penetration testing methodology.

Many a pentest likely begins with nmap scans; I prefer a 
slow comprehensive scan if I’m using Zenmap, which for 
this test translates to nmap -sS -sU -T4 -A -v -PE -PP 
-PS21,22,23,25,80,113,31339 -PA80,113,443,10042 -PO 
--script all 192.168.248.102 at the command line. Re-
sults were then saved as 192.168.248.102.xml.

In the Dradis UI I first clicked add branch, and added a node 
called DFD Cart. 

Note: after submitting content to Dradis, I recommend mak-
ing a habit of hitting F5 to refresh the UI.

I then clicked import from file and selected Nmap upload un-
der Available Formats while selecting 192.168.248.102.xml. I 
then dragged the resulting node under the DFD Cart branch. 
Figure 3 describe how Dradis populated the UI with Nmap 
results.

3	 http://secunia.com/advisories/38635.

4	 https://holisticinfosec.org/content/view/135/45.

Figure 2 – Dradis login

Figure 3 – Dradis imports Nmap results

ISSA Journal | April 2010

©2010 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.



40

toolsmith – Dradis: Effective Information Sharing for Pentest Teams | Russ McRee

top of the list (see Figure 5), the import was simply to validate 
the OSVDB import feature functionality for this discussion.

Testers can also assign their own note categories and apply 
notes to any node as they see fit.

Remember, as each tester adds content, it’s returned to the UI 
in real time; just remember to hit F5 to keep current.

Notes are attributed to the relevant author with a Last Up-
dated timestamp.

Reporting
No pentest engagement is of much value without a resulting 
report, and Dradis includes export functionality to assist in 
this cause as well.

In order to generate reports all branches/nodes that you wish 
to report must be assigned to the applicable category. In the 
Notes UI, double click the category associated (default is De-
fault category) with each finding/note and choose HTMLEx-
port ready. Results are quite utilitarian by default but can be 
customized via template modifications. The same reporting 
can be generated using custom Word templates as well.

In conclusion
For teams that facilitate many penetration/vulnerability tests 
that require uniform documentation and organization, Dra-
dis is quite useful. Consider this a young project; it’s under 
dynamic development and is a bit buggy, but getting better 
all the time. I’ve incorporated Dradis into my testing process 
as I was pleased with the benefits discovered while writing 
this. Give it a good close look and provide feedback to the 

development team; they are attentive 
and very interested in continuously 
improving Dradis.

Cheers…until next month. 

Acknowledgments
— Daniel Martín Gómez, Dradis de-
veloper

About the Author
Russ McRee, GCIH, GCFA, GPEN, 
CISSP, is team leader and senior secu-
rity analyst for Microsoft’s Online Ser-
vices Security Incident Management 
team. As an advocate of a holistic ap-
proach to information security, Russ’ 
website is holisticinfosec.org. Contact 
him at russ@holisticinfosec.org.

Nmap scans are great 
for host-level analy-
sis, but DFD Cart is 
a web application, so 
I made use of Burp 
Suite Professional and 
saved the test results 
to dfd_cart.xml. 
Again, I followed the 
import procedures 
described above but 
opted for the Burp 
upload format. The 
same held true for 
Nessus results. Once 
uploaded, one need 
only drill in to the 
applicable node in 
the UI’s left pane (see 
Figure 4). For each 
imported finding, 
the relevant uploaded 
content will populate 
in the Notes pane.

With the UI focused 
on the DFD Cart node I also opted to Import Note. This in-
cludes the above mentioned OSVDB import feature. I select-
ed General Search under Filter and provided DFD Cart under 
Search for. The seven available OSVDB IDs were returned via 
the query; I right-clicked them and chose Import this. In this 
case, as I’d already reported the XSS and CSRF bugs at the 

Figure 4 – Dradis branch/node list

Figure 5 – Dradis imports OSVDB advisory notes

ISSA Journal | April 2010

©2010 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.


