
  

Introduction to Dradis plugin programming

22 February 2008

by Siebert Lubbe



  

Overview

 General client side structure
 Dispatcher
 Plugin framework
 Small example
 Nmap plugin



  

General client side structure

Have a look at you Dradis client side directory structure and you will find 
the following directories.

 Conf – XML configuration. Yip that’s the configuration used to specify the 
connection to the server.

 Core – Core processing files. Won’t go into depth here but as you 
guessed it’s the core of the program

 Ui – Handling the graphical user interface. Contains the QT and WX 
graphical interface files.

 Commands

+ Dispatchers – Our plugins inherit from these: Simple or Namespace 
(We’ll look at this in a second)

+ Modules – This is our plugins



  

Dispatcher

As earlier mentioned, you plugins inherit either from a simple or a 
namespace dispatcher. 

 Simple dispatcher – It is for command lines with a simple command and a 
bunch of options.
Format: <command> <option list>
Example: dir c:\windows

 Namespace dispatcher – It is for the case where you want to group a 
logical set of commands in a namespace.
Format: <namespace> <command> <option list>
Example: add host 10.0.0.1



  

Plugin framework (1)

The code framework below gives you an idea of how the basic structure 
of a Dradis plugin looks. After you have seen this, have a look at some of 
the plugin files in the modules directory.

Module Commands

  class <PluginName> < Dispatcher::<Namespace/Simple>

    INFO = { 

      <:namespace => 'export',>

      :commands => {

        ‘dir' => { 

          :desc => 'shows a random Chuck Norris fact', 

          :syntax => [:required => true, :label => path', :regexp => /\w+/]

        }      }    }

def dir(*args)

  <implementation of command>

       end

    end # class

end # module



  

Plugin framework (2)

 Your plugin must be part of the Command s module thus – Module 
Commands.

 Your plugin class must inherit either from the Simple or the 
Namespace dispatcher as explained earlier.

 The INFO constant is a hash that defines the structure of the 
commands that you will receive from the command line. You define 
the namespace, the commands, the option list and descriptions in 
this hash. Best is to go through a few code examples to get a feel for 
this. 

 After this you start implementing methods that relates to the 
commands as defined in you INFO constant. Your method receives 
*args as a parameter. args[1] is the first option after you command 
as received from the command line.



  

Personal details

Position: Software Developer for MWR InfoSecurity (
http://www.mwrinfosecurity.com/). Specifically interested in Ruby and the 
Rails framework. 

Email: siebert.lubbe@mwrinfosecurity.com

http://www.mwrinfosecurity.com/

